
Improvement of TD-TR Algorithm for Simplifying
GPS Trajectory Data

Kanasuan Hansuddhisuntorn
School of Information, Computer and

Communication Technology
Sirindhorn International Institute of Technology

Pathum Thani, Thailand
boss.kanasuan@gmail.com

Teerayut Horanont
School of Information, Computer and

Communication Technology
Sirindhorn International Institute of Technology

Pathum Thani, Thailand
teerayut@siit.tu.ac.th

Abstract—Over the past decades, massive amounts of GPS
trajectories have been obtained with the development of low-
cost GPS enabled devices, capturing users’ spatial and temporal
information. The massive increase in trajectory data generates
high storage and data processing burdens. Several of trajectory
simplification algorithms have been proposed to overcome these
difficulties. A key requirement in trajectories simplification is to
minimize information loss while preserving the quality of the in-
formation. To further reduce the compression time, an improved
algorithm for top-down time-ratio (TD-TR) called top-down time-
ratio Reduce (TD-TR Reduce) is proposed. The algorithms were
evaluated using several parameters, such as compression times
and errors arising from trajectory data simplifications in the
Geolife trajectory data set. The results of the simulation show
that TD-TR Reduce can achieve an attractive trade-off between
the compression rate and the simplification error with up to 33%
lower compression time.

Index Terms—GPS, Trajectory Data, Trajectories Simplifica-
tion

I. INTRODUCTION

Over the past decade, the number of GPS-enabled devices
has increased significantly [1]. Due to the increasing number
of GPS-enabled devices, such as mobile phones or in-car navi-
gation systems, the volume of spatial and temporal information
recording the footprint of a moving device has increased
dramatically. The massive amounts of trajectory data could
easily exceed the existing available data storage, which leads
to three major challenges: storing, transmitting and visualizing
the data. For example, a calculation due to Meratnia and de
By [2] shows that without any data compression, storing a
trajectory data of 400 objects per day at an interval of 10
seconds requires a storage capacity of 100 Mb.

While dealing with these massive amounts of trajectory
data, an effective compression mechanism is one of the
most key components of the storage layer. Many trajectory
compression types have been introduced in the past. This can
be divided into various methods of categorization, lossless
compression and lossy compression or online compression and
offline compression. The advantage of online compression is
that it supports real-time applications, which can compress
trajectory data while picking up new trajectory points. Only
after all points are obtained from the input trajectory, of-
fline algorithms soon begin to compress. However, offline

compression usually has smaller errors compare to online
compression. Lossless compression enables the original data
to be reconstructed without loss of information, while Lossy
compression is not possible. The main advantage of lossy
compression is that it can significantly reduce the trajectory
size while maintaining reasonable error tolerances.

This paper introduces an offline lossy trajectory simplifica-
tion algorithm, by efficiently utilizing the feature extraction
points and skip threshold, which results in a shorter com-
pression time against the current state of the art compression
algorithms.

The rest of this paper is arranged according to the following:
Section II summarizes related work. Section III presents the
metrics for evaluating the simplification algorithm. Section
IV explains the feature point extraction procedure. Section V
presents the proposed trajectory algorithm in detail. Section
VI discusses our evaluation results. Section VII describes our
conclusion and future work.

II. RELATED WORK

Several algorithms have been proposed to simplify trajectory
data, different algorithms use different approaches to find a
similar trajectory with fewer points. As for trajectory simplifi-
cation, the current state of the art algorithm had been studied
by zhang et al. [3] for both online and offline compression
mode, providing a comprehensive evaluation of 25 trajectory
simplification algorithms on 5 different data sets.

For offline compression mode, The well-known trajectory
The Douglas-Peuker (DP) algorithm [4], compresses trajectory
data by recursively divides the trajectory to decide which
points should be retained according to user-defined perpen-
dicular Euclidean distance (PED) threshold. Top-down time-
ratio (TD-TR) [5] is an extension of the Douglas-Peucker,
which uses Spatial Euclidean distance (SED) instead of PED.
MRPA algorithm [6] is proposed to compress trajectories in
O(N) computational time, where a new error metric called an
integral square synchronous Euclidean distance (ISSD) was
introduced.

For online compression mode, the Spatial QUalIty Sim-
plification Heuristic Algorithm (SQUISH) [7] used a priority

queue data structure. It compresses each trajectory by remov-
ing points from the priority queue that has the lowest priority
until the desired compression ratio is achieved. Later, Spatial
QUalIty Simplification Heuristic-Extended (SQUISH-E) was
developed to ensure that the SED error is within a user-specific
bound.

III. METRICS

This section describes the metrics for evaluating the simpli-
fication algorithm. In this study, the original trajectory T of
length n is represented as a temporally ordered sequence of
points {P1, ..., Pn}, where each point Pn(xn, yn, tn) contains
longitude x, latitude y and timestamp t

After the simplification, the simplified trajectory can be
express as T ′ = {Ps1 , ..., Psm} and Psn(xsn , ysn , tsn) where
m ≤ n and 1 = s1 < ... < sm = n

This section provides a comprehensive survey of both error
metrics (Chapter III-A) and performance metrics (Section III-
B) and a detailed discussion of these metrics (Section III-C).

A. Error Metrics

1) Synchronized Euclidean Distance (SED): The dis-
tance between the actual points Pk and its synchronized
point P ′k(x

′
k, y
′
k, t
′
k) created by two points Ps and Pe

at identical time stamps (see Figure 1) and can be
calculated as follows:

SED(Pk) =
√
(xk − x′k)2 + (yk − y′k)2

where

x′k = xs +
xe − xs
te − ts

(tk − ts)

y′k = ys +
ye − ys
te − ts

(tk − ts)

SED(pk)

Ps Pe

Pk

P'k

Fig. 1. Synchronized Euclidean Distance (SED)

2) Trajectory Distance Reduction Ratio (TDRR): Tra-
jectory distance reduction ratio is the accumulated travel
distance ratio of the simplified trajectory T ′ versus its
original trajectory T and can be calculated as follows:

TDRR(T, T ′) = 1− TDD(T)

TDD(T ′)

where

TDD(Ti) =

|T |−1∑
i=1

DISTANCE(Pi, Pi+1)

P1

P2 P3

P4

P5 P6

P7
S12

S23
S34 S45

S56
S67

Change Point

Fig. 2. Two speed change points

B. Performance Metrics

1) Compression Ratio (CR): Compression ratio is de-
fined as the size of the simplified trajectory T ′ versus
its original trajectory T and can be calculated as follows:

CR(T, T ′) = 1− |T |
|T ′|

2) Compression T ime: Compression time is the amount
of time taken for a trajectory to be simplified.

C. Discussion

The trajectory-simplifying algorithm’s efficiency is defined
as the combination of error metrics and performance metrics.
For the further improvement of error metrics, In order to
measure the average time-synchronized euclidean distance
between the original trajectory T and its simplified trajectory
T ′, we introduce Average Synchronized Euclidean distances
(ASED). The ideal simplified trajectory should be highly
compressed with minimum compression time, TDRR and
ASED. (see Figure 3)

P1

P2

P3

P4

P5

P6

d1 d2
d3

Fig. 3. Example of calculating ASED. Given Trajectory T =
{P1, P2, P3, P4, P5, P6} and simplified trajectory T ′ = {P1, P4, P6}
ASED is calculated as (d1 + d2 + d3)/2

IV. FEATURE POINT EXTRACTION

Some GPS tracking point is redundant in some applications.
To retain only the important part where some events occur (e.g.
travel mode transition), we proposed a feature point extraction
model with a focus reducing the trajectory data based on
several of the movement characteristics given as follows.

1) Movement Speed: In the transition mode, node move-
ment speeds typically change significantly [8], this in-
cludes walking, cycling, driving vehicles or taking the
train. As shown in Figure 4, The feature node is the
place where the node changes transportation mode from
driving to walking.

2) Heading: The heading changes accordingly to the cur-
rent modes of transport. For example, when the mode
of transport is walking rather than another mode of
transport, the heading will change very often.

Start End

Car Walk

Travel mode change

Fig. 4. Transition of transportation mode

In order to obtain the above-mentioned node points, we pro-
pose a process for the extraction of the feature points. To detect
a feature point caused by switching between transportation
modes. First, we specify the difference of movement speed as
4i+1 = |SPi+1 − SPi|, in which SPi is an average speed
in the line segment Pi,i+1 . When 4i+1 exceeds a certain
threshold, Pi+1 is kept as a feature point. Because speed
changes are usually caused by switches between travel modes
(see Figure 4). We propose the usage of the standard deviation
of movement speeds as the speed threshold since the standard
deviation can indicate changes in velocity. The speed threshold
SPth is expressed as

SPth =

√∑n−1
i=1 (SPi − SP)2

n− 1

where

SP =

n−1∑
i=1

SPi

n− 1

To detect a feature point caused by a significant change in
the node heading. δi+1 was defined as the heading different
between θi and θi+1 and can be calculated as follows:

δi+1 =

{
360− |θi+1 − θi|, if |θi+1 − θi| > 180

|θi+1 − θi|, otherwise

where θi represents the current heading on the line segment
Pi,i+1, that can be calculated using The haversine formula. If
δi+1 exceeds a certain threshold δth, Pi+1 is kept as a feature
point.

When the node travels in a straight line at a constant speed
(e.g. highway, tollway), the entire point will be ignored from
the two feature point extraction method mentioned above.
In order to prevent the above scenario from occurring, we
introduce the skipping threshold skipth. When the number
of points that are ignored from the feature point extraction
method above reaches the skipping threshold, the point is kept
as a feature point.

V. TD-TR REDUCE ALGORITHM

In order to reduce the compression time of the current TD-
TR algorithm (see Figure 5), we propose a TD-TR Reduce
algorithm to simplify the trajectory by performing a traditional
TD-TR algorithm on a set of extracted feature points. The
following procedure is provided in algorithm 1 below:

1) Add the first from T to the feature point array Tfeature
(line 3)

2) Calculate the standard deviation of speed in T and set
it as the speed threshold SPth (line 4)

3) Starting from i = 1, iteratively add point pi+1 to the
feature point array Tfeature and set skip parameter
back to zero if the movement speed different 4i+1 is
greater than or equal to speed threshold SPth or the
heading different δi+1 is greater than or equal to heading
threshold δth (lines 5-7)

4) If the n point was not added to the feature point array
Tfeature, increase skip value by one (line 10)

5) If the the skip value reaches the certain skip threshold
skipth, add point pi+1 to the feature point array Tfeature
and set skip parameter back to zero (lines 12-15)

6) Add the last points in T to the feature point array
Tfeature (line 18)

7) Perform TD-TR algorithm on feature points array
Tfeature and stored it as a simplified trajectory T ′. (line
19)

8) Finally, the simplified trajectory T ′ is returned. (line 20)

Algorithm 1 TD-TR Reduce algorithm
Input: T = {p1,...,pn}, heading threshold δth,

error threshold ε, skip threshold skipth
Output: Simplified Trajectory T ′

1: Tfeature = []
2: skip = 0, i = 1
3: Tfeature = Tfeature APPEND p1
4: SPth ← SD of speed in T
5: while i < n− 1 do
6: if | 4i+1 | ≥ SPth or δi+1 ≥ δth then
7: Tfeature = Tfeature APPEND pi+1

8: skip = 0
9: else

10: skip = skip+ 1
11: end if
12: if skip == skipth then
13: Tfeature = Tfeature APPEND pi+1

14: skip = 0
15: end if
16: i = i+ 1
17: end while
18: Tfeature = Tfeature APPEND pn
19: T ′ = TDTR(Tfeature, ε)
20: return T ′

P1

P2 P3

P4

P5 P6

P7

Retained Point
Removed Point

Fig. 5. TD-TR Algorithm

2 4 6 8 10

1,000

1,500

2,000

2,500

Skip threshold

R
em

ai
ni

ng
po

in
ts

δth = 45◦

δth = 60◦

δth = 75◦

δth = 90◦

Fig. 6. Trajectory one

2 4 6 8 10
200

300

400

500

Skip threshold

R
em

ai
ni

ng
po

in
ts

δth = 45◦

δth = 60◦

δth = 75◦

δth = 90◦

Fig. 7. Trajectory three

2 4 6 8 10
400

600

800

1,000

1,200

Skip threshold

R
em

ai
ni

ng
po

in
ts

δth = 45◦

δth = 60◦

δth = 75◦

δth = 90◦

Fig. 8. Trajectory two

VI. EVALUATIONS

This section introduces a dataset and then our proposed
algorithms are evaluated on the basis of three aspects: com-
pression ratio, compression time and error metrics. Finally,
we discuss the results and summarize the performance of the
proposed algorithms. Three algorithms (DP, TD-TR, TD-TR
Reduce) were written in Python, while MRPA was written in
Matlab. The experiment is conducted on Windows 10 with 4
CPU cores (Intel i7-7700K with 4.20GHz) and 32 GB RAM.

A. Dataset

The Geolife dataset was collected by 182 participants in the
(Microsoft Research Asia) Geolife project [9] for five years
(from April 2007 to August 2012). Different transport modes,
including biking, walking and traveling, are included in the
data set. Most of the data collection has taken place in China,
Beijing. More than 90% of trajectories are collected in a dense
format, e.g. every 1 to 5 seconds or every 5 to 10 meters per
point. The data set was cleaned to remove trajectories with
high noise such as large jumps in time and space.

B. Experiment Settings

For this simulation, three trajectories are chosen to observe
the effect of skipth and δth on the number of remaining
points. Figures 6-8 show the number of stop points under
different heading threshold and skip threshold. The details of
each trajectory are shown in Table 1. From Figures 6-8, the
curve decreases dramatically when skipth increases from 2 to
3 and from 3 to 4. The curve starts to changes slowly when
skipth ≥ 5, so we set skipth = 5. On the other hand, the
number of remaining points decreases significantly when δth
change from 45◦ to 60◦ and starts to change constantly when
δth ≥ 60◦, so we set δth to 60◦.

TABLE I
TRAJECTORY DETAILS

Trajectory ID # of Points Start Stop
1 4,164 2009-02-20 04:01:36 2009-02-20 14:51:36
2 1,937 2008-10-28 23:51:59 2008-10-29 11:25:00
3 838 2009-02-24 12:16:55 2009-02-24 13:35:55

C. Comparison of Trajectory Simplification Algorithm

Our proposed TD-TR Reduce algorithm was compared
against three other algorithms DP, TD-TR, MRPA) in terms of
compression ratio, compression time and simplification error.
To simulate the result, 25 trajectories are selected from the
Geolife dataset and the trajectory details are shown in Figure
9. Figures 10-13 display the simulation results.

As shown in Figure 10, on compression time, DP out-
performs other algorithms, while the compression time of
MRPA is significantly longer than other algorithms. The
reason could be that MRPA error metric (LSSD) requires
higher computation cost. Furthermore, TD-TR Reduce achieve
shorter compression time than both of TD-TR and MRPA. This
is because the feature point extraction technique was adopted,
which reduces the computational time significantly.

In Figure 11, with regard to the compression ratio, the plots
of DP and MRPA are close to each other, while the plot of TD-
TR and TD-TR Reduce are slightly lower. Meanwhile, TD-TR
Reduce outperforms the traditional TD-TR algorithm.

Figures 12, illustrates that both TD-TR and TD-TR Reduce
achieve much lower trajectory distance reduction ratio, while
DP obtains the highest trajectory distance reduction ratio
among all algorithms.

In Figures 13, the ASED error of DP is generally higher
than other algorithms and the curves of TD-TR Reduce are
slightly higher than Traditional TD-TR. Particularly, TD-TR
always achieves the lowest ASED error.

Therefore, TD-TR Reduce makes a favorable trade-off be-
tween the compression ratio, the trajectory distance reduction
ratio and the ASED error while having up to 33% lower com-
pression time on large trajectory compares to the traditional
TD-TR algorithm.

1 3 5 7 9 11 13 15 17 19 21 23 25
0

0.2

0.4

0.6

0.8

1
·105

Trajectory ID

N
um

be
r

of
po

in
ts

Fig. 9. Trajectory details

1 3 5 7 9 11 13 15 17 19 21 23 25
0

2

4

6

Trajectory ID

C
om

pr
es

si
on

tim
e

(s
)

DP
TD-TR
MRPA

TD-TR Reduce

Fig. 10. Compression time

1 3 5 7 9 11 13 15 17 19 21 23 25
60

70

80

90

100

Trajectory ID

C
om

pr
es

si
on

R
at

io
(%

)

DP
TD-TR
MRPA

TD-TR Reduce

Fig. 11. Compression ratio

1 3 5 7 9 11 13 15 17 19 21 23 25
0

10

20

30

Trajectory ID

T
T

D
R

(%
)

DP
TD-TR
MRPA

TD-TR Reduce

Fig. 12. Trajectory distance reduction ratio (TDDR)

1 3 5 7 9 11 13 15 17 19 21 23 25

0

0.2

0.4

0.6

0.8

1

Trajectory ID

A
SE

D
(N

or
m

al
iz

ed
)

DP
TD-TR
MRPA

TD-TR Reduce

Fig. 13. Average SED error (ASED)

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented a new Trajectory Simplification
Algorithm called TD-TR Reduce, which proposes a new
method of data reduction based on the extraction of a feature
point. Only the important points will be retained by using
this data reduction method. The algorithm then performs the
traditional TD-TR algorithm on the extracted feature point set.
The experiments show that a favorable trade-off between the
simplification rate, the distance reduction ratio and the ASED
error with up to 33% lower compression time can be achieved
through the proposed algorithm. Future studies should identify
appropriate dynamic parameters for the heading threshold and
skip threshold as well as investigate the effectiveness of TD-
TR Reduce on different datasets.

REFERENCES

[1] J. Muckell, P. W. Olsen, J.-H. Hwang, C. T. Lawson, and S. S. Ravi,
“Compression of trajectory data: a comprehensive evaluation and new
approach,” GeoInformatica, vol. 18, no. 3, pp. 435–460, Jul. 2013.

[2] N. Meratnia and R. A. de By, “Spatiotemporal Compression Techniques
for Moving Point Objects,” in Advances in Database Technology - EDBT
2004, Springer Berlin Heidelberg, 2004, pp. 765–782.

[3] D. Zhang, M. Ding, D. Yang, Y. Liu, J. Fan, and H. T. Shen, “Trajectory
simplification,” Proceedings of the VLDB Endowment, vol. 11, no. 9,
pp. 934–946, May 2018.

[4] D. Douglas and T. Peucker, “Algorithms for the reduction of the number
of points required to represent a line or its caricature,cartographica,”
Cartographica: The International Journal for Geographic Information
and Geovisualization, vol. 10, no. 2, pp. 112–122, Dec. 1973.

[5] N. Meratnia and R. A. de By, “Spatiotemporal Compression Techniques
for Moving Point Objects,” in Advances in Database Technology - EDBT
2004, Springer Berlin Heidelberg, 2004, pp. 765–782.

[6] Minjie Chen, Mantao Xu, and P. Franti, “A Fast O(N) Multiresolution
Polygonal Approximation Algorithm for GPS Trajectory Simplification,”
IEEE Transactions on Image Processing, vol. 21, no. 5, pp. 2770–2785,
May 2012.

[7] J. Muckell, J.-H. Hwang, V. Patil, C. T. Lawson, F. Ping, and S. S.
Ravi, “SQUISH,” in Proceedings of the 2nd International Conference
on Computing for Geospatial Research & Applications - COM.Geo ’11,
2011.

[8] Y. Zheng, Y. Chen, Q. Li, X. Xie, and W.-Y. Ma, “Understanding
transportation modes based on GPS data for web applications,” ACM
Transactions on the Web, vol. 4, no. 1, pp. 1–36, Jan. 2010.

[9] Z. Yu, X. Xing, and W.-Y. Ma, “Geolife: a collaborative social network-
ing service among user, location and trajectory,” IEEE Data Engineering
Bulletin, vol. 33, no. 2, pp. 32–40, 2010.

