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Abstract—In this paper, we assume that the progression rules
of music are in a subclass of context-free language, and we
let computers find them autonomously. We employ the Iterated
Learning Model (ILM) by Simon Kirby, and ask if the computer
can find a music knowledge that is common to us, and also if
the computers can compose music independently of our music
knowledge. In this research, we have shown an example set of
rules found in the 25 études of Burgmüller by beat. Although
many of categories in the tree seem redundant and futile, some
of them reflect probable progressions, which well match with our
human intuition. This experiment has several virtues compared
with other grammar-based formalism for music. One is that we
do not need to provide a dictionary beforehand. The other is that
we can exclude the human-biased intuition, which had hindered
the definition of creativity.

I. INTRODUCTION

It is generally accepted that the origin of language and that
of music are one and the same [12], [14]; we employ throat to
utter or to sing, and ears to hear, and furthermore we are said
to use the same parts of our brain to articulate them. We say
birds sing, but this is only a metaphor; in most of the species
only male birds utter languages to woo female birds to bear
descendants

Thus far, many linguists and musicologists, as well as
computer scientists, have tried to find a grammar structure
in music [7]–[9], [11], [13]. Some of them are successful
enough to analyze certain genre of music, e.g., we can find
the rules of chord progression in context-free grammar for
early classicist music. Among which, the approach from the
Generative Theory of Tonal Music (GTTM) [3]–[6] seems
worth noting as the theory has had the viewpoint of Chomskian
hierarchy of tree structure. However, as many musicologists
would agree, the syntactic rule for music is quite loose
compared with languages, to agree rather spontaneous change
of rules. Furthermore, the history of music has devoted to
deviate from the old tradition, to tolerate freer framework.
Therefore, it seems less fruitful for us to fix a certain class
of formal language, which plausibly resides between context-
free and context-sensitive grammar in Chomsky hierarchy, in
music.

In traditional linguistics, the main stream has been set to
distinguish the theory of syntax and that of semantics, aside
from phonetics and pragmatics. We regard that the discussion
on what is the meaning of music is beyond the current scope;
instead, we consider that the tree structure owes a part of

what we call meaning. Also, we contend that the syntax is
the universal generative faculty of human beings, that is the
source of expressive power common in language, mathematics,
morality, and music.

Cope has discussed in [1], [2] the creativity by computers,
in which he has claimed that we human are biased to degrade
the computer music only because they are composed by the
computer. Again, we would avoid the discussion on what is the
creativity, but we simply try to make the computer compose
music in a quite naı̈ve sense, disregarding its quality.

In this paper, we assume that the progression rules of
music are in a subclass of context-free language, and we let
computers find them autonomously. We employ the Iterated
Learning Model (ILM) by Simon Kirby [10]. The research
questions of us are two-fold; the first is if the computer can
find a music knowledge that is common to us without listening
to music. The second is if the computers can compose music
independently of the music knowledge, that is familiar to us.

This paper is composed of as follows. In the following
section 2, we introduce our methodology of ILM, where those
basic operations as chunk, merge, and replace are introduced.
In Section 3, we adapt the ILM to our objective, that is,
we abandon the predicate-argument structure (PAS) for the
meaning and instead we adopt our own categorical structure:
labeled context-free grammar. In Section 4, we discuss how we
evaluate our method. In Section 5, we show our experimental
result and in Section 6 we conclude.

II. CULTURAL EVOLUTION OF LANGUAGE

Infants learn language from their parents, without observ-
ing the internal language of them, that is the innate but hidden
grammar formalism. As a result, the infants may acquire a
different language from their mothers. In Fig. 1, the baby guess
possible chunking from the few sample sentences given by
his/her mother.

The iterated learning model (ILM) suggests that the infant
grows up to be the teacher of the language in the successive
generation; since the number of the sentences given by the
parents is limited, this bottleneck is said to contribute to
increase the number of the expressible meanings (Fig. 2).

In ILM, agent’s knowledge represented by Labeled Context
Free Grammar (LCFG) as follows.



Fig. 1. Chunking by Infants

Fig. 2. Expressible Meanings by Generation

� �
Labeled Context Free Grammar G

G = (N,T,M, V, P, S)

N : Non-terminal symbols
T : Terminal symbols
M : Predefined meanings (PAS)
V : Variables for M
P : A set of rules

α→ β
(
α ∈ N × (M ∪ V ) , β ∈ ((N × V ) ∪ T )+

)
S : Start non-terminal symbol S ∈ N

α must have all variables in β.� �
The three operations employed in the ILM are as follows.

• Chunk

S/like(mary, john)→ marylikesjohn

S/love(mary, john)→ marylovesjohn

↓ chunk
S/X1(mary, john)→ mary N0/X1 esjohn

N0/like→ lik

N0/love→ lov

• Merge

S/hate(X2, X3)→ N1/X2 hates N2/X3

N1/gavin→ gavin

N1/pete→ pete

N2/gavin→ gavin

↓ merge
S/hate(X2, X3)→ N2/X2 hates N2/X3

N2/gavin→ gavin

N2/pete→ pete

• Replace

S/admire(john, pete)→ johnadmirespete

N3/admire→ admire

↓ replace
S/X1(john, pete)→ john N3/X1 pete

N3/admire→ admire

III. EXTENSION OF ILM TO MUSIC ANALYSIS

A model which we propose has two important features.
One is importing categorial level into the model. This is
to express categorial equivalence between different meanings
like hyponymy and hypernymy. The other is unlimitation on
number of arguments and variety of meanings. Number of
arguments and variety of meanings are dynamically increased
by learning of input data. In this model, a meaning is de-
fined by agent’s self. These features implement an unlimited
hierarchical compositional meaning which has recursion. It is
different from ILM which is using predefined meanings (PAS).

A. Categorial Level

We employ a set of attributes as an interpretation of a
meaning “mi

I” as follows.

Ex. mi
I = {〈measure〉 , 〈I/F 〉 , 〈F 〉}

This interpretation means that mi is a measure in a piece of
music which has a chord “F ” and a chord with represented by
tonal “I/F ” (“mi is a 〈measure〉” ∧ “mi is a 〈F 〉” ∧ “mi

is a 〈I/F 〉”).

We define three operations (∩,∪,−) for interpretation of a
meaning.

mi
I ∩mj

I =
{
x|x ∈ mi

I ∧ x ∈ mj
I}

mi
I ∪mj

I =
{
x|x ∈ mi

I ∨ x ∈ mj
I}

mi
I −mj

I =
{
x|x ∈ mi

I ∧ x /∈ mj
I}

Operation ∩, ∪ are the same as set theory. Operation − is
a calculation of diff, and explained by A\B in set theory
(A = mi

I , B = mj
I). The interpretation of a new meaning

is defined by these operation in learning.

B. Extension of Expression of Meanings

In ILM, a predefined meaning formed into PAS enables to
map between a meaning and a symbol string in a knowledge.
We define syntax for a meaning to express unlimited meaning
as follows.



� �
“p (ε)” and “p (args, ε)” is represented by “p” and
“p (args)” as an abbreviation respectively.

φ ::= p (args)

args ::= φ | φ, args | ε
(Comma“,′′ isapartofsyntax.)

Ex. m1 (m2 (m3,m4 (m5) ,m6) ,m7 (m8))
p is an atomic meaning.

φ′ ::= p (args′)

args′ ::= x′ | x′, args′

x is a variable.� �
We call φ a meaning and φ represents a combination of
grammar rules and categorial meaning. φ′ represents a variable
expression in a rule. Each variable matches φ.

A size of meaning sequence |φ| is defined as follows.

Ex. |φ| = |p (args)| = |p (φ, · · · )| = 〈number of φ〉
|m1 (m2 (m3,m4 (m5) ,m6) ,m7 (m8))| = 2

|m2 (m3,m4 (m5) ,m6)| = 3

A size of φ is defined by learning, and possible to be an any
number. It implies that structure of a meaning is un-predefined
in our model.

A predefined meaning in ILM is represented by extended
expression in our model (1). In following equation, mi denotes
unclear meanings of sentence and structure of PAS (The PAS
needs three arguments.).

like (mary, john) ⊆ mi (like,mary, john) (1)

C. Application of Extensions to LCFG

We employed categorial level and unlimited expression of
meaning. Agent’s grammar also reflected these extensions as
follows.� �

Extended Labeled Context Free Grammar G′

G′ = (N,T,Ma, Va, P, S)

N : Non-terminal symbols
T : Terminal symbols

Ma : Atomic meanings
Va : Atomic variables
M : Meanings formed into φ′, p ∈Ma, x ∈ Va
P : A set of rules

α→ β (α ∈ N ×M,β ∈ ((N × Va) ∪ T )+)
S : Start non-terminal symbol S ∈ N

Number of variables in α must be number of (N × V )
in β.� �

Ma and Va are not predefined and what an agent creates

through learning. Therefore, size of M is possible to be infinite
because syntax φ has recursion.

D. Extension of Learning

In ILM, after an agent has accepted a certain number of
utterances, she tries to build a new set of generation rules.
There are three operations chunk, merge, and replace based
on the generalized method. In the conventional ILM, a rule is
applicable when a pair of meaning and a part of a sequence of
symbols in utterance matches. However, this condition is still
ambiguous because the same local sequence of symbols may
own different meanings. In our model, we define the applicable
conditions by two interpretation of a meaning. Extended LCFG
rule in agent’s knowledge has the unique atomic meaning
respectively. Thus, although every rule can possess a different
meaning from others, these difference may not reflect the
different sets of attributes. In our formalism, therefore, we can
understand the sameness of the attributes by the interpretation.

• Chunk

We supposes the conditions on chunk as follows.
ma

I ∩mb
I 6= ∅

m1
I = ma

I ∩mb
I

m2
I = ma

I −m1
I

m3
I = mb

I −m1
I

◦ For two no compositional rules

S/ma → CDCCDEF#GC

S/mb → CDCDEEF#GC

↓ chunk
S/m1 (x1)→ CDC N1/x1 EF#GC

N1/m2 → CD

N1/m3 → DE

◦ For compositional rule and no compositional
one

S/mb (x1)→ C#D N1/x1 F#GC#

S/ma → C#DCDEF#GC#

↓ chunk
S/m1, x1 → C#D N1/x1 F#GC#

N1/m2 → C#DE

◦ The diff of generalized strings has some non-
terminal symbol.

S/ma (x1, x2)→ CD N1/x2 N2/x1
S/mb (x1, x2)→ CDCDE N3/x1

↓ chunk
S/m1 (x1)→ CD N4/x1
N4/m2 (x1, x2)→ N1/x2 N2/x1
N4/m3 (x1)→ CDE N3/x1

• Merge

We suppose the conditions on merge as follows.(
mi

I ⊇ mj
I) ∨ (

mj
I ⊇ mi

I)
m1

I = ma
I ∪mb

I



◦ Merge two rules

S/m2 (x1, x2)→ N1/x1 E[FA N2/x2
N1/ma → CD

N1/m3 → AB[

N2/mb → CD

↓ merge
S/m2 (x1, x2)→ N3/x1 E[FA N3/x2
N3/m1 → CD

N3/m3 → AB[

◦ For start rule and not start rule

S/ma (x1, x2)→ N1/x1 E[FA N2/x2
N1/mb (x1, x2)→ N1/x1 E[FA N2/x2

↓ merge
S/m1 (x1, x2)→ N1/x1 E[FA N2/x2

• Replace

We suppose the conditions on replace as follows.
mi

I ⊇ mj
I

m1
I = ma

I −mb
I

◦ Replace a part of string in left side to the other
rule.

S/ma → F#GCEDAF#

N1/mb → ED

↓ replace
S/m1 (x1)→ F#GC N1/x1 AF#

N1/mb → ED

◦ For two compositional rules

S/ma (x1)→ F#GC N1/x1 AF#

N2/mb (x2)→ F#GC N1/x2
↓ replace

S/m1 (x1)→ N2/x1 AF#

N2/mb (x2)→ F#GC N2/x2

E. Generation of Symbol String

In our model, each meaning possesses a unique label.
Therefore, when given a label, the composisiton of a sequence
of symbols is straightforward; the composite label structure
directly represents the tree, being different from other gener-
ative models like deep learning or probabilistic CFG. In the
following example, we can easily understand that m1 is the
top node and has two branches of m2 and m4(m1(· · · )).

• Target label: m1 (m2,m4 (m1 (m3,m5 (m2))))

Agent’s Knowledge
S/m1 (x1, x2)→ N1/x1 N2/x2

N1/m2 → F#GD

N1/m3 → CDC

N2/m4 (x3)→ F#GC S/x3
N2/m5 (x4)→ CD N1/x4

S/m1 (x1, x2)→ N1/x1 N2/x2

S/m1 (m2, x2)→ F#GD N2/x2

S/m1 (m2,m4 (x3))→ F#GDF#GC S/x3
S/m1 (m2,m4 (m1 (x4, x5)))

→ F#GDF#GC N1/x4 N2/x5
S/m1 (m2,m4 (m1 (m3, x5)))

→ F#GDF#GCCDC N2/x5
S/m1 (m2,m4 (m1 (m3,m5 (x6))))

→ F#GDF#GCCDCCD N1/x6
S/m1 (m2,m4 (m1 (m3,m5 (m2))))

→ F#GDF#GCCDCCDF#GD

IV. EVALUATION METHOD FOR SYNTACTIC STRUCTURE

In natural language processing, when we evaluate the
validity of the process, we compose a parse tree of sentences
and investigate if the tree reflects the adequate structure or
not because we believe the tree reflects the meaning of a
sentence. In the similar way, we consider the adequacy of the
tree structure of music piece even though music does not own
explicit meaning like natural language.

However, in general, we may not be able to enumerate
all the probable trees for a given music piece since our
LCFG has a property of recursion and the combination of
applicable generation rules can be infinite. In order to avoid
this combinatorial explosion of computational complexity of
O (2n), we restrict the number of probable trees to one for
each music piece.

Based on the newly acquired generative rules, we can com-
pose the exactly same music since every generation process
can be preserved in those rules. In addition, the new rules
compose a new piece of music. If we can record the history
of the generation process, we can detect how the new rules
were applied differently from the original one; that is, the
original piece is decomposed by the rules and the each part
is recomposed in a different way. Then, we give an analysis
system of the logs of composition.

A rule of agent’s learned knowledge has a condition that
the order of variables in left side is the same with one in right
side. ma and mb are atomic meanings before apply a learning
method, m1, m2 and m3 are used in new rules. We can denote
a rewriting rule as follows.

args : x, y, z, x′, z′

ma,mb,m1,m2,m3 ∈M

• Chunk

ma (x, y, z)⇒ m1 (x,m2 (y) , z)

mb (x
′, y, z′)⇒ m1 (x

′,m3 (y) , z
′)

• Merge

ma ⇒ m1

mb ⇒ m1

• Replace

ma (x, y, z)⇒ m1 (x,m2 (y) , z)



Fig. 3. An Image of the Simulation

Fig. 4. Translation of Measure to Symbol String

V. EXPERIMENTAL RESULT

We experimented to find grammar in the 25 études of
Burgmüller (Fig. 3). At first, we divide each piece beat
by beat, and we have grouped a set of notes in one beat.
Then, we translate a piece of music to a sequence of sets
of simultaneously sounding notes. Then, an agent tries to find
generative rules in these pieces.

In this translation process we have embedded the notion
of measure. We have explicitly defined that the sequence
of a certain number of beats composes a measure (Fig. 4),
giving a single atomic label on each as terminal symbols.
Therefore, each rule which represents a measure has four
terminal symbols if the piece is four beat music.

A whole piece of music is represented by a rule with
the start non-terminal symbol. The rule has a string of non-
terminal symbols in right hand side.

A. Detection of Music Knowledge

Two salient results are as follows.

1) progression to stable chord: In Fig. 6, we can find the
solution to a harmonic chord from a set of dissonant notes.
Fig. 5 shows the first bar of Le Candeur of Burgmüller. The
second beat includes a passing note of D, but is resolved to C
in the third beat. We can find a corresponding generation rule
that represents a progression from the dissonant to consonant
chord.

Fig. 5. Part of a Piece: Recursion to a stable chord in the 25 études of
Burgmüller

Fig. 6. Parse Tree: Recursion to a stable chord in the 25 études of Burgmüller

2) phrase detection: In early classicist music, the music
phrase and motif is articulated by 4 bars, 8 bars, and 16 bars.
La Candeur also suggests us the phrasing by 8 bars. Our rule
has found that the articulation after the 17-th bar after the
first repetition consisting of eight-bars, though we have not
explicitly put the punctuation here (Fig. 7, 8).

B. Composition of Music Score

After learning the generative rules, an agent can compose
a piece of music. Fig. 9 is created by a learned agent.

VI. CONCLUSION

In this research, we have modified the ILM by Kirby,
and have applied it to grammar detection in music. We have
chopped off the 25 études of Burgmüller by beat, and have
found the statistically plausible connections between them.
Although many of those nodes in tree, that are the categories

Fig. 7. Part of Piece: Phrase detection in the 25 études of Burgmüller



Fig. 8. Parse Tree: Phrase detection in the 25 études of Burgmüller

Fig. 9. Parce Tree: Creation of a piece

of the syntax, seem redundant and futile, we still found that
some of them reflected the probable progression, which well
matched with our human intuition, e.g., the progression from
a set of dissonant notes including suspension or appoggiatura
to a chordal set.

This experiment has several virtues compared with other
grammar-based formalism for music. One is that we do not
need to provide a dictionary beforehand. The other is that we
can exclude the human-biased intuition, which had hindered
the definition of creativity.

Our experiment has stayed still in only one generation. We
need to continue to the iterated model, to observe the further
development of the grammar.
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