
ITS351 Database Programming Laboratory: (Laboratory #4) MySQL

Last Update: 20 August 2015

@Copyright ICT Program, Sirindhorn International Institute of Technology, Thammasat University 1/43

School of Information and Computer Technology
Sirindhorn International Institute of Technology

Thammasat University
ITS351 Database Programming Laboratory

Laboratory #4: MySQL

Objective: - To learn how to connect to MySQL

- To learn how to maintain MySQL, including table creation and

MySQL meta commands

- To learn how to make a query in MySQL

- To learn how to update data in MySQL

MySQL Resource: http://www.mysql.com/

1 What is MySQL

MySQL is currently the most popular open source database server in existence. On top of

that, it is very commonly used in conjunction with PHP scripts to create powerful and

dynamic server-side applications. MySQL is a relational database management system that

runs as a server providing multi-user access to a number of databases.

2 Installation of MySQL Database Management Systems

MySQL is available for Windows, Linux and other UNIX variants. You can get MySQL from

its web site www.mysql.com.

MySQL download

MySQL download - the WINDOWS version

On the download page of MySQL web site, you will find the links to Windows version.

According to the MySQL site the Windows version "contains both the Standard and Max

server binaries. It also contains a version of the command-line client which uses the Cygwin

library to provide command history and editing".

MySQL download – the LINUX version

RPM download is recommended for Linux workstations. (Make sure you download all the

RPMs; the MySQL server, client and development RPMs. Note: You need the MySQL client

software for this tutorial. Check MySQL website, it might have a complete RPM package that

contains all the RPMS in one download file). If you run Linux as a server, the tarball

download might be better. Once you have downloaded MySQL, let's see how to install

MySQL on Windows and get it up and running.

MySQL Installation

MySQL installation on Windows

Once you have successfully downloaded the Windows version, installing it is a breeze. Note

that if you use Appserv, it will automatically install MySQL and start the service. You can

ignore these steps.

1. Create a temporary directory called mysqltem.

2. Unzip the file to this directory.

3. After unzipping is over, you'll find a file called "setup.exe".

http://www.mysql.com/
http://www.mysql.com/

ITS351 Database Programming Laboratory: (Laboratory #4) MySQL

Last Update: 20 August 2015

@Copyright ICT Program, Sirindhorn International Institute of Technology, Thammasat University 2/43

4. Close all programs

5. Click on Start - Run and browse to the setup file in mysqltem.

6. Click "OK" to proceed

7. The setup program loads and guides you through the installation process.

8. Choose the "Typical" installation, unless you know what you want!

9. MySQL would be installed in c:\mysql (unless you specified some other directory).

10. Restart Windows.

11. Start an MS-DOS session and migrate to c:\mysql\bin

12. Now, type the following at the prompt:

mysqld-shareware –standalone

OR (in later versions)

mysqld

13. Type "mysql" (without the quotes) at the DOS prompt.

14. The prompt is changed to the "mysql" prompt.

15. To test the MySQL server, type "show databases;" as follows.

mysql> show databases;

+----------------+

| Database |

+----------------+

| mysql |

| test |

+----------------+

2 rows in set (0.00 sec)

17. Type "quit" at the mysql prompt or "\q" to exit mySQL.

18. Since our work is done (for the time being), we should shut down the MySQL server.

Issue the following command at the prompt.

mysqladmin -u root shutdown

MySQL installation on Ubuntu

It is simple to install MySQL on Ubuntu. Note that you need to have a root privilege

(administrator’s right) to do so.

1. Type the following command at the prompt:

sudo apt-get install mysql-server

2. The MySQL will start up automatically after the installation. Anyway, we can start up

a MySQL manually using the following command.

$ sudo /etc/init.d/mysql start

* Starting MySQL database server mysqld [OK]

ITS351 Database Programming Laboratory: (Laboratory #4) MySQL

Last Update: 20 August 2015

@Copyright ICT Program, Sirindhorn International Institute of Technology, Thammasat University 3/43

3. We can check whether the MySQL daemon start up properly or not by the following

command.

$ sudo /etc/init.d/mysql status

4. We can change the root password of MySQL as follows. Note that the root of MySQL

is not the root of UNIX (or Linux).

$ mysqladmin -uroot password rootpass

By this command the root password will be changed to ‘rootpass’. We also can

change the root password by entering the mysql first as shown below.

$ mysql –u root

use mysql

select host, user, password from user;

update user set password = password(‘rootpass’)

where user = ‘root’;

quit

% mysqladmin –u root reload

% mysql –u root –p

  enter password

select host, user, password from user;

5. We can create a MySQL database by the following command (use root).

$ mysqladmin -uroot -prootpass create testdb

We can show the list of databases by the following command.

$ mysql -uroot -prootpass

show databases

6. We can create a new user in the MySQL database by the following command (use

root). Here, the user account is ‘testuser’, the password is ‘testuser’ and the

database is ‘testdb’.

$ mysql -uroot -prootpass

use testdb

insert into user (host, user, password) values

('localhost', 'testuser', password('testpass'));

select host, user, password from user;

quit

$ mysqladmin -u root -p reload

$ mysql -utestuser -ptestpass

7. We can grant permission to the user ‘testuser’ to select the database ‘testdb’.

$ mysql -uroot -prootpass

grant select on testdb.* to testuser;

select host, user, password from user;

quit

ITS351 Database Programming Laboratory: (Laboratory #4) MySQL

Last Update: 20 August 2015

@Copyright ICT Program, Sirindhorn International Institute of Technology, Thammasat University 4/43

$ mysqladmin -u root -p reload

$ mysql -utestuser -ptestpass

8. Once MySQL client is running, you should get the mysql> prompt. Type the

following at this prompt and get the following result.

mysql > show databases;

+----------------+

| Database |

+----------------+

| mysql |

| test |

+----------------+

2 rows in set (0.00 sec)

Okay, we've successfully installed MySQL on your system.

3 MySQL Usage

The MySQL database package consists of the following:

 The MySQL server: This is the heart of MySQL. You can consider it a program

that stores and manages your databases.

 MySQL client programs: MySQL comes with many client programs. The one

with which we'll be dealing a lot is called mysql (note: smallcaps). This provides

an interface through which you can issue SQL statements and have the results

displayed.

 MySQL client Library: This can help you in writing client programs in C.

Why we need client and server programs?

The server and client programs are different entities. Thus, you can use client programs on

your system to access data on a MySQL server running on another computer. (Note: you

would need appropriate permissions for this. Consult the system administrator of the

remote machine.) Dividing the package into a server and clients separates the actual data

from the interface.

Create a database (for root (admin) user of MySQL only)

In this section, we will learn how to create a database. (Note that the commands in this

section can be run only by the root (admin) user of MySQL.) The commands for

creating a database in Windows and Linux are the same. However, the preliminary

commands in Linux are slightly more complex. We will discuss the Windows and Linux

systems separately. We will create a database called employees that contains details of

employees of our company Bignet. The details we plan to store would be names, salaries,

age, addresses, emails, birth dates, hobbies, phone numbers etc.

Windows system

1. Start the MySQL server by issuing the command mysqld-shareware --

standalone at the prompt in c:\mysql\bin. Refer the previous session Installing

MySQL on Windows for further details. Note that if MySQL is installed through

AppServ, then the MySQL server usually starts automatically on boot.

2. Now invoke the mysql client program by typing mysql at the prompt.

3. The prompt is changed to a mysql> prompt. Type the following command and

get the following result.

http://www.webdevelopersnotes.com/tutorials/sql/2.php3
http://www.webdevelopersnotes.com/tutorials/sql/2.php3

ITS351 Database Programming Laboratory: (Laboratory #4) MySQL

Last Update: 20 August 2015

@Copyright ICT Program, Sirindhorn International Institute of Technology, Thammasat University 5/43

mysql> create database employees;

Query OK, 1 row affected (0.00 sec)

 (Note: The command ends with a semi-colon).

4. This means that you have successfully created the database. Now, let's see how

many databases you have on your system. Issue the following command and

then get the following result.

mysql> show databases;

+----------------+

| Database |

+----------------+

| employees |

| mysql |

| test |

+----------------+

3 rows in set (0.00 sec)

Here we have three databases, two created by MySQL during installation and our

employees database.

5. To come back to the DOS prompt, type quit at the mysql prompt.

Linux system

1. We assume that you are working from your account and not the root. Start a

terminal session and become the superuser (Type su at the prompt and then

enter the root password).

2. Now we'll access the MySQL server. Type:

mysql -u root -p

The system prompts for the MySQL root password that you set up in Installing

MySQL on Linux. (Note: This is not the Linux root password but the MySQL root

password). Enter the password, which is not displayed for security reasons. Once

you are successfully logged in, the system prints a welcome message and displays

the mysql prompt ... something like

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 1 to server version: 3.22.32

Type 'help' for help.

mysql>

3. Now we are ready for creating the employees database. Issue the command and

get the following result.

mysql> create database employees;

Query OK, 1 row affected (0.00 sec)

4. An important point to note is that this database is created by the root and so will

not be accessible to any other user unless permitted by the root. Thus, in order

to use this database from my account, I have to set the permissions by issuing

the following command:

http://www.webdevelopersnotes.com/tutorials/sql/3.php3
http://www.webdevelopersnotes.com/tutorials/sql/3.php3

ITS351 Database Programming Laboratory: (Laboratory #4) MySQL

Last Update: 20 August 2015

@Copyright ICT Program, Sirindhorn International Institute of Technology, Thammasat University 6/43

mysql> GRANT ALL ON employees.* TO username@localhost

 IDENTIFIED BY "123456";

The above command grants my account (username@localhost) all the permissions

on employees database and sets my password to 123456. You should replace

username with your user name and choose an appropriate password.

5. Then close the mysql session by typing quit at the prompt. Exit from superuser and

come back to your account. (Type exit).

(Note: From now on, any mysql users can use the commands on server)

6. To connect to MySQL from your account, type:

$ mysql -u [user_name] –p

 Specifying the database name at the start by using the command to access mysql at

the system prompt:

$ mysql [database_name] -u [user_name] -p

You need to type in the password when prompted. (This password was set by the

GRANTS ALL... command above). The system displays the welcome message once

you have successfully logged on to MySQL. Here is how your session should look

like:

[test@localhost test]$ mysql -u u48n0001 –p

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 273 to server version: 5.0.10-beta-Max

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

6. Typing the command SHOW DATABASES; will list all the databases available on the

system. You should get the following result.

mysql> show databases;

+--------------------+

| Database |

+--------------------+

| information_schema |

| test |

| u49n0001db |

+--------------------+

3 rows in set (1.20 sec)

Here we have three databases, two created by MySQL during installation and our

employees database.

7. To come back to the DOS prompt, type quit at the mysql prompt.

ITS351 Database Programming Laboratory: (Laboratory #4) MySQL

Last Update: 20 August 2015

@Copyright ICT Program, Sirindhorn International Institute of Technology, Thammasat University 7/43

Using a database

Let’s start the mysql client program and select our database. At the mysql prompt, issue

the command:

mysql> SELECT DATABASE();

+------------+

| DATABASE() |

+------------+

| |

+------------+

1 row in set (0.01 sec)

Typing the command SELECT DATABASE(); will list the database that we selected to use.

The above shows that no database has been selected. Actually, every time we work with

mysql client, we have to specify which database we plan to use. There are several ways of

doing it. It's necessary to specify the database we plan to use; else MySQL will throw an

error.

1) Specifying the database with the USE statement at the mysql prompt is done as

follows. In this example, u49n0001db is the name of the database.

mysql> use u49n0001db;

2) Specifying the database with \u at the mysql prompt:

mysql> \u u49n0001db;

Create tables

In this section, we will explore the MySQL commands to create database tables. Databases

store data in tables. In simplest terms, tables consist of rows and columns. Each column

defines data of a particular type. Rows contain individual records. Consider the following:

Name Age Country Email

Manish Sharma 28 India manish@simplygraphix.com

John Doe 32 Australia j.dow@nowhere.com

John Wayne 48 U.S.A. jw@oldwesterns.com

Alexander 19 Greece alex@conqueror.com

The table above contains four columns that store the name, age, country and email. Each

row contains data for one individual. This is called a record. To find the country and email

of Alexander, you'd first pick the name from the first column and and then look in the third

and fourth columns of the same row. A database can have many tables; they are tables

that contain the actual data. Hence, we can segregate related (or unrelated) data in

different tables. For our employees database, we'll have one table that stores company

details of the employees. The other table would contain personal information. Let's make

the first table. The SQL command for creating tables looks complex when you view it for

the first time. Don't worry if you get confused, we'll be discussing this in more detail later.

ITS351 Database Programming Laboratory: (Laboratory #4) MySQL

Last Update: 20 August 2015

@Copyright ICT Program, Sirindhorn International Institute of Technology, Thammasat University 8/43

CREATE TABLE employee_data

(

emp_id int unsigned not null auto_increment primary key,

f_name varchar(20),

l_name varchar(20),

title varchar(30),

age int,

yos int,

salary int,

perks int,

email varchar(60)

);

Note: In MySQL, commands and column names are not case-sensitive; however, table and

database names might be sensitive to case depending on the platform (as in Linux). You

can thus, use create table instead of CREATE TABLE.

The CREATE TABLE keywords are followed by the name of the table we want to create,

employee_data. Each line inside the parenthesis represents one column. These columns

store the employee id, first name, last name, title, age, years of service with the company,

salary, perks and emails of our employees and are given descriptive names emp_id,

f_name, l_name, title, age, yos, salary, perks and email, respectively.

Each column name is followed by the column type. Column types define the type of data

the column is set to contain. In our example, columns, f_name, l_name, title and email

would contain small text strings, so we set the column type to varchar, which means

varriable characters. The maximum number of characters for varchar columns is specified

by a number enclosed in parenthesis immediately following the column name. Columns

age, yos, salary and perks would contain numbers (integers), so we set the column type

to int. Our first column (emp_id) contains an employee id. Its column type looks really

long. Let's break it down.

Type Description
int specify that the column type is an integer (a number).

unsigned determine that the number will be unsigned (positive integer).

not null
specifies that the value cannot be null (empty); that is, each

row in the column would have a value.

auto_increment When MySQl comes across a column with an auto_increment

attribute, it generates a new value that is one greater than

the largest value in the column. Thus, we don't need to

supply values for this column, MySQL generates it for us!

Also, it follows that each value in this column would be

unique. (We'll discuss the benefits of having unique values

very shortly).

primary key helps in indexing the column that help in faster searches.

Each value has to be unique.

Why have a column with unique values?

Our company Bignet has grown tremendously over the past two years. We've recruited

thousands. Don't you think there is a fair chance that two employees might have the same

name? Now, when that happens, how can we distinguish the records of these two

employees unless we give them unique identification numbers? If we have a column with

unique values, we can easily distinguish the two records. The best way to assign unique

numbers is to let MySQL do it!

ITS351 Database Programming Laboratory: (Laboratory #4) MySQL

Last Update: 20 August 2015

@Copyright ICT Program, Sirindhorn International Institute of Technology, Thammasat University 9/43

Note: When you press the enter key after typing the first line, the mysql prompt changes

to a ->. This means that mysql understands that the command is not complete and

prompts you for additional statements. Remember, each mysql command ends with a

semi-colon and each column declaration is separated by a comma. Also, you can type the

entire command on one line if you so want.

You screen should look similar to:

mysql> CREATE TABLE employee_data

 -> (

 -> emp_id int unsigned not null auto_increment primary key,

 -> f_name varchar(20),

 -> l_name varchar(20),

 -> title varchar(30),

 -> age int,

 -> yos int,

 -> salary int,

 -> perks int,

 -> email varchar(60)

 ->);

Query OK, 0 rows affected (0.01 sec)

mysql>

Okay, we just made our first table.

Using tables

Now that we've created our employee_data table, let's check its listing. Type SHOW

TABLES; at the mysql prompt. This should present you with the following display:

mysql> SHOW TABLES;

+---------------------+

| Tables in employees |

+---------------------+

| employee_data |

+---------------------+

1 row in set (0.00 sec)

Describing tables

MySQL provides us with a command that displays the column details of the tables.

Issue the following command at the mysql prompt:

Mysql> DESC employee_data;

+--------+------------------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+--------+------------------+------+-----+---------+----------------+

| emp_id | int(10) unsigned | | PRI | 0 | auto_increment |

| f_name | varchar(20) | YES | | NULL | |

| l_name | varchar(20) | YES | | NULL | |

| title | varchar(30) | YES | | NULL | |

| age | int(11) | YES | | NULL | |

| yos | int(11) | YES | | NULL | |

| salary | int(11) | YES | | NULL | |

| perks | int(11) | YES | | NULL | |

| email | varchar(60) | YES | | NULL | |

+--------+------------------+------+-----+---------+----------------+

9 rows in set (0.00 sec)

ITS351 Database Programming Laboratory: (Laboratory #4) MySQL

Last Update: 20 August 2015

@Copyright ICT Program, Sirindhorn International Institute of Technology, Thammasat University 10/43

DESCRIBE or DESC lists all the column names along with their column types of the table.

Now let's see how we can insert data into our table.

Insert data into tables

The INSERT SQL statement impregnates our table with data as follows.

INSERT into table_name (column1, column2....)

values (value1, value2...);

where table_name is the name of the table into which we want to insert data; column1,

column2 etc. are column names and value1, value2 etc. are values for the respective

columns. This is quite simple. The following statement inserts the first record in

employee_data table.

mysql> INSERT INTO employee_data (f_name, l_name, title, age, yos,

salary, perks, email) values ("Manish", "Sharma", "CEO", 28, 4, 200000,

50000, "manish@bignet.com");

As with other MySQL statements, you can enter this command on one line or span it in

multiple lines. Some important points:

 The table name is employee_data

 The values for columns f_name, l_name, title and email are text strings and

surrounded with quotes.

 Values for age, yos, salary and perks are numbers (intergers) and without quotes.

 You'll notice that we've inserted data in all columns except emp_id. This is because,

we leave this job to MySQL, which will check the column for the largest value,

increment it by one and insert the new value.

Once you type the above command correctly in the mysql client, it displays a success

message.

mysql> INSERT INTO employee_data

 -> (f_name, l_name, title, age, yos, salary, perks, email)

 -> values

 -> ("Manish", "Sharma", "CEO", 28, 4, 200000,

 -> 50000, "manish@bignet.com");

Query OK, 1 row affected (0.00 sec)

Inserting additional records requires separate INSERT statements. In order to make life easier,

INSERT statements can be packed into a file (one statement on one line). In this example, the

file is called employee.dat. Note that the file extension is not necessarily “.dat”. It could be

“.txt” or anything as needed.

employee.dat

INSERT INTO employee_data (f_name, l_name, title, age, yos, salary, perks, email)

VALUES ("John", "Hagan", "Senior Programmer", 32, 4, 120000, 25000,

"john_hagan@bignet.com");

INSERT INTO employee_data (f_name, l_name, title, age, yos, salary, perks, email)

VALUES ("Ganesh", "Pillai", "Senior Programmer", 32, 4, 110000, 20000,

"g_pillai@bignet.com");

INSERT INTO employee_data (f_name, l_name, title, age, yos, salary, perks, email)

VALUES ("Anamika", "Pandit", "Web Designer", 27, 3, 90000, 15000, "ana@bignet.com");

INSERT INTO employee_data (f_name, l_name, title, age, yos, salary, perks, email)

VALUES ("Mary", "Anchor", "Web Designer", 26, 2, 85000, 15000, "mary@bignet.com");

INSERT INTO employee_data (f_name, l_name, title, age, yos, salary, perks, email)

VALUES ("Fred", "Kruger", "Programmer", 31, 3, 75000, 15000, "fk@bignet.com");

INSERT INTO employee_data (f_name, l_name, title, age, yos, salary, perks, email)

ITS351 Database Programming Laboratory: (Laboratory #4) MySQL

Last Update: 20 August 2015

@Copyright ICT Program, Sirindhorn International Institute of Technology, Thammasat University 11/43

VALUES ("John", "MacFarland", "Programmer", 34, 4, 80000, 16000, "john@bignet.com");

INSERT INTO employee_data (f_name, l_name, title, age, yos, salary, perks, email)

VALUES ("Edward", "Sakamuro", "Programmer", 25, 2, 75000, 14000,

"eddie@bignet.com");

INSERT INTO employee_data (f_name, l_name, title, age, yos, salary, perks, email)

VALUES ("Alok", "Nanda", "Programmer", 32, 3, 70000, 10000, "alok@bignet.com");

INSERT INTO employee_data (f_name, l_name, title, age, yos, salary, perks, email)

VALUES ("Hassan", "Rajabi", "Multimedia Programmer", 33, 3, 90000, 15000,

"hasan@bignet.com");

INSERT INTO employee_data (f_name, l_name, title, age, yos, salary, perks, email)

VALUES ("Paul", "Simon", "Multimedia Programmer", 43, 2, 85000, 12000,

"ps@bignet.com");

INSERT INTO employee_data (f_name, l_name, title, age, yos, salary, perks, email)

VALUES ("Arthur", "Hoopla", "Multimedia Programmer", 32, 1, 75000, 15000,

"arthur@bignet.com");

INSERT INTO employee_data (f_name, l_name, title, age, yos, salary, perks, email)

VALUES ("Kim", "Hunter", "Senior Web Designer", 32, 2, 110000, 20000,

"kim@bignet.com");

INSERT INTO employee_data (f_name, l_name, title, age, yos, salary, perks, email)

VALUES ("Roger", "Lewis", "System Administrator", 35, 2, 100000, 13000,

"roger@bignet.com");

INSERT INTO employee_data (f_name, l_name, title, age, yos, salary, perks, email)

VALUES ("Danny", "Gibson", "System Administrator", 34, 1, 90000, 12000,

"danny@bignet.com");

INSERT INTO employee_data (f_name, l_name, title, age, yos, salary, perks, email)

VALUES ("Mike", "Harper", "Senior Marketing Executive", 36, 2, 120000, 28000,

"mike@bignet.com");

INSERT INTO employee_data (f_name, l_name, title, age, yos, salary, perks, email)

VALUES ("Monica", "Sehgal", "Marketing Executive", 30, 3, 90000, 25000,

"monica@bignet.com");

INSERT INTO employee_data (f_name, l_name, title, age, yos, salary, perks, email)

VALUES ("Hal", "Simlai", "Marketing Executive", 27, 2, 70000, 18000,

"hal@bignet.com");

INSERT INTO employee_data (f_name, l_name, title, age, yos, salary, perks, email)

VALUES ("Joseph", "Irvine", "Marketing Executive", 27, 2, 72000, 18000,

"joseph@bignet.com");

INSERT INTO employee_data (f_name, l_name, title, age, yos, salary, perks, email)

VALUES ("Shahida", "Ali", "Customer Service Manager", 32, 3, 70000, 9000,

"shahida@bignet.com");

INSERT INTO employee_data (f_name, l_name, title, age, yos, salary, perks, email)

VALUES ("Peter", "Champion", "Finance Manager", 36, 4, 120000, 25000,

"peter@bignet.com");

Inserting data into employee_data table with employee.dat file

On Linux (From shell)

1. Exit from mysql by using “\q” to command prompt.

2. Go to the directory of the downloaded file. Issue the following command

mysql u49nxxxxdb < employee.dat –u u49nxxxx -p

3. Enter your password.

For Windows, one may use the command “source” in MySQL prompt.

On MySQL Prompt

Issue the following command to execute MySQL statements line by line

mysql> source employee.dat ;

ITS351 Database Programming Laboratory: (Laboratory #4) MySQL

Last Update: 20 August 2015

@Copyright ICT Program, Sirindhorn International Institute of Technology, Thammasat University 12/43

Our table contains 21 entries (20 from employee.dat file and one from the INSERT

statement we issued at the beginning).

Querying MySQL tables

Our employee_data table now contains enough data for us to work with. Let us see how we

can extract (query) it. Querying involves the use of the MySQL SELECT command. Data is

extracted from the table using the SELECT SQL command. Here is the format of a SELECT

statement:

SELECT column_names

FROM table_name

[WHERE ...conditions]

[Group By ...column_name]

[Order By ... column_name][asc/desc]

[Having ... conditions];

The conditions part of the statement is optional (we'll go through this later). Basically, you

need to know the column names and the table name from which to extract the data. For

example, in order to extract the first and last names of all employees, issue the following

command.

mysql> SELECT f_name, l_name FROM employee_data;

+---------+------------+

| f_name | l_name |

+---------+------------+

| Manish | Sharma |

| John | Hagan |

| Shahida | Ali |

| Peter | Champion |

+---------+------------+

21 rows in set (0.00 sec)

The statement tells MySQL to list all the rows from columns f_name and l_name. On close

examination, you'll find that the display is in the order in which the data was inserted.

Furthermore, the last line indicates the number of rows our table has (21).

To display the entire table, we can either enter all the column names or use a simpler

form of the SELECT statement.

mysql> SELECT * FROM employee_data;

Some of you might recognize the * in the above statement as the wildcard. Though we

don't use that term for the character here, it serves a very similar function. The * means

'ALL columns'. Thus, the above statement lists all the rows of all columns.

ITS351 Database Programming Laboratory: (Laboratory #4) MySQL

Last Update: 20 August 2015

@Copyright ICT Program, Sirindhorn International Institute of Technology, Thammasat University 13/43

Selecting data using conditions

Now, we know that the conditions are optional (we've seen several examples in the last

session... and you would have encountered them in the assignments too). The SELECT

statement without conditions lists all the data in the specified columns. The strength of

RDBMS lies in letting you retrieve data based on certain specified conditions. In this section

we will look at the SQL Comparison Operators.

 The = and != comparision operators

mysql> SELECT f_name, l_name FROM employee_data WHERE f_name='John';

+--------+------------+

| f_name | l_name |

+--------+------------+

| John | Hagan |

| John | MacFarland |

+--------+------------+

2 rows in set (0.00 sec)

This displays the first and last names of all employees whose first names are John. Note

that the word John in the condition is surrounded by single quotes. You can also use double

quotes. The quotes are important since MySQL will throw an error if they are missing. Also,

MySQL comparisions are case insensitive; which means "john", "John" or even "JoHn"

would work. Select the first and last names of all employees who are programmers.

mysql> SELECT f_name,l_name FROM employee_data WHERE title="Programmer";

+--------+------------+

| f_name | l_name |

+--------+------------+

| Fred | Kruger |

| John | MacFarland |

| Edward | Sakamuro |

| Alok | Nanda |

+--------+------------+

4 rows in set (0.00 sec)

List the first and last names of all employees who are 32 years old.

mysql> SELECT f_name, l_name FROM employee_data WHERE age = 32;

+---------+--------+

| f_name | l_name |

+---------+--------+

| John | Hagan |

Assignments 1

1. Write the complete SQL statement for creating a new database called
employee

2. How would you list all the databases available on the system?
3. Which statement is used to list the information about a table? How do you use

this statement?
4. Write the statement for inserting the following data in employee_data table

First name: Rudolf

Last name: Reindeer
Title: Business Analyst
Age: 34
Years of service: 2
Salary: 95000
Perks: 17000

email: rudolf@bugnet.com
5. Write the statement for listing data from salary, perks and yos (year of

service) columns of employee_data table.

ITS351 Database Programming Laboratory: (Laboratory #4) MySQL

Last Update: 20 August 2015

@Copyright ICT Program, Sirindhorn International Institute of Technology, Thammasat University 14/43

| Ganesh | Pillai |

| Alok | Nanda |

| Arthur | Hoopla |

| Kim | Hunter |

| Shahida | Ali |

+---------+--------+

6 rows in set (0.00 sec)

Remember that the column type of age was int, hence it's not necessary to surround 32

with quotes. This is a subtle difference between text and integer column types. The !=

means 'not equal to', the opposite of the equality operator.

 The greater than and lesser than operators

Let’s retrieve the first names of all employees who are older than 32.

mysql> SELECT f_name, l_name FROM employee_data WHERE age > 32;

+--------+------------+

| f_name | l_name |

+--------+------------+

| John | MacFarland |

| Hassan | Rajabi |

| Paul | Simon |

| Roger | Lewis |

| Danny | Gibson |

| Mike | Harper |

| Peter | Champion |

+--------+------------+

7 rows in set (0.00 sec)

How about employees who draw more than $120000 as salary?

mysql> SELECT f_name, l_name FROM employee_data WHERE salary > 120000;

+--------+--------+

| f_name | l_name |

+--------+--------+

| Manish | Sharma |

+--------+--------+

1 row in set (0.00 sec)

Now, let's list all employees who have had less than 3 years of service in the company.

mysql> SELECT f_name, l_name FROM employee_data WHERE yos < 3;

+--------+----------+

| f_name | l_name |

+--------+----------+

| Mary | Anchor |

| Edward | Sakamuro |

...

| Hal | Simlai |

| Joseph | Irvine |

+--------+----------+

10 rows in set (0.00 sec)

ITS351 Database Programming Laboratory: (Laboratory #4) MySQL

Last Update: 20 August 2015

@Copyright ICT Program, Sirindhorn International Institute of Technology, Thammasat University 15/43

 The <= and >= operators

Select the names, ages and salaries of employees who are more than or equal to 33 years

of age.

mysql> SELECT f_name, l_name, age, salary

 -> FROM employee_data WHERE age >= 33;

+--------+------------+------+--------+

| f_name | l_name | age | salary |

+--------+------------+------+--------+

| John | MacFarland | 34 | 80000 |

| Hassan | Rajabi | 33 | 90000 |

| Paul | Simon | 43 | 85000 |

| Roger | Lewis | 35 | 100000 |

| Danny | Gibson | 34 | 90000 |

| Mike | Harper | 36 | 120000 |

| Peter | Champion | 36 | 120000 |

+--------+------------+------+--------+

7 rows in set (0.00 sec)

Display employee names who have less than or equal to 2 years of service in the company.

mysql> SELECT f_name, l_name FROM employee_data WHERE yos <= 2;

+--------+----------+

| f_name | l_name |

+--------+----------+

| Mary | Anchor |

| Edward | Sakamuro |

| Paul | Simon |

| Arthur | Hoopla |

| Kim | Hunter |

| Roger | Lewis |

| Danny | Gibson |

| Mike | Harper |

| Hal | Simlai |

| Joseph | Irvine |

+--------+----------+

10 rows in set (0.00 sec)

Assignments 2

1. What will the following SELECT statement display?

 SELECT * from employee_data where salary <=100000;

2. Write SELECT statement to extract the ids of employees who are more than 30
years of age.

3. Write SELECT statement to extract the first and last names of all web designers.
4. List all full name of employees (last name followed by first name) who hold the

title of Marketing Executive.

ITS351 Database Programming Laboratory: (Laboratory #4) MySQL

Last Update: 20 August 2015

@Copyright ICT Program, Sirindhorn International Institute of Technology, Thammasat University 16/43

Pattern matching with text data

We will now learn at how to match text patterns using the where clause and the LIKE

operator in this section. The equal to (=) comparision operator helps in selecting strings

that are identical. Thus, to list the names of employees whose first names are ‘John’, we

can use the following SELECT statement.

mysql> SELECT f_name, l_name FROM employee_data WHERE f_name='John';

+--------+------------+

| f_name | l_name |

+--------+------------+

| John | Hagan |

| John | MacFarland |

+--------+------------+

2 rows in set (0.00 sec)

What if we want to display employees whose first names begin with the alphabet J? SQL

allows for some pattern matching with string data. For example,

mysql> SELECT f_name, l_name FROM employee_data WHERE f_name LIKE 'J%';

+--------+------------+

| f_name | l_name |

+--------+------------+

| John | Hagan |

| John | MacFarland |

| Joseph | Irvine |

+--------+------------+

3 rows in set (0.00 sec)

You will notice that we have replaced == with LIKE and we've used a percentage sign

(%) in the condition. The % sign functions as a wildcard (similar to the usage of * in DOS

and Linux systems). It signifies any character. Thus, "J%" means all strings that begin

with the alphabet J. Similarly "%S" selects strings that end with S and "%H%", strings
that contain the alphabet H. Let’s list all the employees that have Senior in their titles.

mysql> SELECT f_name, l_name FROM employee_data WHERE title LIKE '%senior%';

+--------+--------+----------------------------+

| f_name | l_name | title |

+--------+--------+----------------------------+

| John | Hagan | Senior Programmer |

| Ganesh | Pillai | Senior Programmer |

| Kim | Hunter | Senior Web Designer |

| Mike | Harper | Senior Marketing Executive |

+--------+--------+----------------------------+

4 rows in set (0.00 sec)

Listing all employees whose last names end with A is as follow.

mysql> SELECT f_name, l_name FROM employee_data WHERE l_name LIKE '%a';

+--------+--------+

| f_name | l_name |

+--------+--------+

| Manish | Sharma |

| Alok | Nanda |

| Arthur | Hoopla |

+--------+--------+

3 rows in set (0.00 sec)

ITS351 Database Programming Laboratory: (Laboratory #4) MySQL

Last Update: 20 August 2015

@Copyright ICT Program, Sirindhorn International Institute of Technology, Thammasat University 17/43

Assignments 3

1. What will the following statement display

SELECT f_name, l_name, salary FROM employee_data

WHERE f_name LIKE '%k%';

2. List all employees whose last names begin with P.
3. Display the names of all employees in the marketing division.
4. List the last names and titles of all programmers.

SQL primer - Logical Operators

In this section, we look at how to select data based on certain conditions presented

through MySQL logical operators. SQL conditions can also contain Boolean (logical)

operators. They are AND, OR and NOT. Their usage is quite simple. Here is a SELECT

statement that lists the names of employees who draw more than $70000 but less than

$90000.

mysql> SELECT f_name, l_name FROM employee_data

 -> WHERE salary > 70000 AND salary < 90000;

Let's display the last names of employees whose last names start with the alphabet S or A.

mysql> SELECT l_name FROM employee_data

 -> WHERE l_name LIKE 'S%' OR l_name LIKE 'A%';

Here is a more complex example. This example lists the names and ages of employees

whose last names begin with S or P, and who are less than 30 years of age.

mysql> SELECT f_name, l_name, age FROM employee_data

 -> WHERE (l_name LIKE 'S%' OR l_name LIKE 'A%') AND age < 30;

+--------+----------+------+

| f_name | l_name | age |

+--------+----------+------+

| Manish | Sharma | 28 |

| Mary | Anchor | 26 |

| Edward | Sakamuro | 25 |

| Hal | Simlai | 27 |

+--------+----------+------+

4 rows in set (0.00 sec)

Note the usage of parenthesis in the statement above. The parenthesis is meant to

separate the various logical conditions and remove any ambiguity. The NOT operator helps

in listing all non programmers. (Programmers include Senior programmers, Multimedia

Programmers and Programmers).

mysql> SELECT f_name, l_name, title FROM employee_data

 -> WHERE title NOT LIKE "%programmer%";

+---------+----------+----------------------------+

| f_name | l_name | title |

+---------+----------+----------------------------+

| Manish | Sharma | CEO |

| Anamika | Pandit | Web Designer |

...

| Peter | Champion | Finance Manager |

+---------+----------+----------------------------+

12 rows in set (0.00 sec)

ITS351 Database Programming Laboratory: (Laboratory #4) MySQL

Last Update: 20 August 2015

@Copyright ICT Program, Sirindhorn International Institute of Technology, Thammasat University 18/43

The final example before we proceed to the assignments. Display all employees with more

than 3 years or service and more than 30 years of age.

mysql> SELECT f_name, l_name FROM employee_data

 -> WHERE yos > 3 AND age > 30;

Assignments 4

1. What is displayed by the following statement?

SELECT l_name, f_name FROM employee_data

WHERE title NOT LIKE '%marketing%' AND age < 30;

2. List the first and last names of all employees who draw less than or equal to $90000

and are not Programmers, Senior programmers or Multimedia programmers.
3. List all ids and names of all employees between 32 and 40 years of age.
4. Select names of all employees who are 32 years of age and are not programmers.

IN and BETWEEN

In this section, we consider IN and BETWEEN operators. To list employees who are Web

Designers or System Administrators, we use a SELECT statement:

mysql> SELECT f_name, l_name, title FROM employee_data WHERE

 -> title = 'Web Designer' OR title = 'System Administrator';

SQL also provides an easier method with IN. Its usage is quite simple.

mysql> SELECT f_name, l_name, title FROM employee_data

 -> WHERE title IN ('Web Designer', 'System Administrator');

+---------+--------+----------------------+

| f_name | l_name | title |

+---------+--------+----------------------+

| Anamika | Pandit | Web Designer |

| Mary | Anchor | Web Designer |

| Roger | Lewis | System Administrator |

| Danny | Gibson | System Administrator |

+---------+--------+----------------------+

4 rows in set (0.00 sec)

Suffixing NOT to IN will display data that is NOT found IN the condition. The following lists

employees who hold titles other than Programmer and Marketing Executive.

mysql> SELECT f_name, l_name, title FROM employee_data

 -> WHERE title NOT IN ('Programmer', 'Marketing Executive');

BETWEEN is employed to specify integer ranges. Thus instead of age >= 32 AND age

<= 40, we can use age BETWEEN 32 and 40.

mysql> SELECT f_name, l_name, age FROM employee_data

 -> WHERE age BETWEEN 32 AND 40;

You can use NOT with BETWEEN as in the following statement that lists employees who

draw salaries less than $90000 and more than $150000.

mysql> SELECT f_name, l_name, salary FROM employee_data

 -> WHERE salary NOT BETWEEN 90000 AND 150000;

ITS351 Database Programming Laboratory: (Laboratory #4) MySQL

Last Update: 20 August 2015

@Copyright ICT Program, Sirindhorn International Institute of Technology, Thammasat University 19/43

Assignments 5

1. List all employees who hold the titles of "Senior Programmer" and "Multimedia
Programmer".

2. List all employee names with salaries for employees who draw between $70000 and

$90000.
3. What is displayed by the following statement?

SELECT f_name, l_name, title, age

FROM employee_data WHERE title NOT IN

('Programmer', 'Senior Programmer', 'Multimedia Programmer');

4. Here is a more complex statement that combines both BETWEEN and IN. What will it
display?

SELECT f_name, l_name, title, age

FROM employee_data WHERE title NOT IN

('Programmer', 'Senior Programmer', 'Multimedia Programmer')

AND age NOT BETWEEN 28 and 32;

Ordering data

This section, we look at how we can change the display order of the data extracted from

MySQL tables using the ORDER BY clause of the SELECT statement. The data that we have

retrieved so far was always displayed in the order in which it was stored in the table.

Actually, SQL allows for sorting of retrieved data with the ORDER BY clause. This clause

requires the column name based on which the data will be sorted. Let's see how to display

employee names with last names sorted alphabetically (in ascending order).

mysql> SELECT l_name, f_name FROM employee_data ORDER BY l_name;

+------------+---------+

| l_name | f_name |

+------------+---------+

| Ali | Shahida |

| Anchor | Mary |

| Champion | Peter |

...

...

| Pillai | Ganesh |

| Rajabi | Hassan |

| Sakamuro | Edward |

...

...

| Simon | Paul |

+------------+---------+

21 rows in set (0.00 sec)

Here are employees sorted by age.

mysql> SELECT l_name, f_name, age FROM employee_data ORDER BY age;

+---------+------------+------+

| f_name | l_name | age |

+---------+------------+------+

| Edward | Sakamuro | 25 |

| Mary | Anchor | 26 |

| Anamika | Pandit | 27 |

| Hal | Simlai | 27 |

...

...

| Roger | Lewis | 35 |

| Mike | Harper | 36 |

ITS351 Database Programming Laboratory: (Laboratory #4) MySQL

Last Update: 20 August 2015

@Copyright ICT Program, Sirindhorn International Institute of Technology, Thammasat University 20/43

| Peter | Champion | 36 |

| Paul | Simon | 43 |

+---------+------------+------+

21 rows in set (0.00 sec)

The ORDER BY clause can sort in an ASCENDING (ASC) or DESCENDING (DESC) order

depending upon the argument supplied. To list employees in descending order of age, we'll

use the statement below.

mysql> SELECT f_name FROM employee_data ORDER BY age DESC;

+---------+------------+------+

| f_name | l_name | age |

+---------+------------+------+

| Paul | Simon | 43 |

| Peter | Champion | 36 |

| Mike | Harper | 36 |

| Roger | Lewis | 35 |

...

...

| Hal | Simlai | 27 |

| Anamika | Pandit | 27 |

| Mary | Anchor | 26 |

| Edward | Sakamuro | 25 |

+---------+------------+------+

21 rows in set (0.00 sec)

Note: The ascending (ASC) order is the default

Assignments 6

1. List all employees in descending order of their years of service.
2. What does the following statement display?

SELECT emp_id, l_name, title, age

FROM employee_data

ORDER BY title DESC, age ASC;

3. Display employees (last names followed by first names) who hold the title of either
"Programmer" or "Web Designer" and sort their last names alphabetically.

Limiting data retrieval

This section, we look at how to limit the number of records displayed by the SELECT

statement. As your tables grow, you'll find a need to display only a subset of data. This can

be achieved with the LIMIT clause.

For example, to list only the names of first 5 employees in our table, we use LIMIT with 5

as argument.

mysql> SELECT f_name, lname FROM employee_data LIMIT 5;

+---------+--------+

| f_name | l_name |

+---------+--------+

| Manish | Sharma |

| John | Hagan |

| Ganesh | Pillai |

| Anamika | Pandit |

| Mary | Anchor |

+---------+--------+

5 rows in set (0.01 sec)

ITS351 Database Programming Laboratory: (Laboratory #4) MySQL

Last Update: 20 August 2015

@Copyright ICT Program, Sirindhorn International Institute of Technology, Thammasat University 21/43

These are the first five entries in our table. You can couple LIMIT with ORDER BY. Thus,

the following displays the 4 senior most employees.

mysql> SELECT f_name, lname, age FROM employee_data

 -> ORDER BY age DESC

 -> LIMIT 4;

+--------+----------+------+

| f_name | l_name | age |

+--------+----------+------+

| Paul | Simon | 43 |

| Mike | Harper | 36 |

| Peter | Champion | 36 |

| Roger | Lewis | 35 |

+--------+----------+------+

5 rows in set (0.01 sec)

Similarly, we can list the two youngest employees.

mysql> SELECT f_name, lname, age FROM employee_data

 -> ORDER BY age LIMIT 2;

+--------+----------+------+

| f_name | l_name | age |

+--------+----------+------+

| Edward | Sakamuro | 25 |

| Mary | Anchor | 26 |

+--------+----------+------+

2 rows in set (0.01 sec)

Extracting Subsets

Limit can also be used to extract a subset of data by providing an additional argument. The

general form of this LIMIT is:

SELECT (whatever) from table LIMIT starting row, Number to extract;

mysql> SELECT f_name, lname FROM employee_data LIMIT 6, 3;

+--------+------------+

| f_name | l_name |

+--------+------------+

| John | MacFarland |

| Edward | Sakamuro |

| Alok | Nanda |

+--------+------------+

3 rows in set (0.00 sec)

This extracts 3 rows starting from the sixth row.

Assignments 7

1. List the names of 3 youngest employees in the company.
2. Extract the next 5 entries starting with the 4th row.
3. Display the names and salary of the employee who draws the largest salary.
4. What does the following statement display?

SELECT emp_id, age, perks

from employee_data ORDER BY

perks DESC LIMIT 10;

ITS351 Database Programming Laboratory: (Laboratory #4) MySQL

Last Update: 20 August 2015

@Copyright ICT Program, Sirindhorn International Institute of Technology, Thammasat University 22/43

Distinct Keyword

In this section, we will look at how to select and display records from MySQL tables using

the DISTINCT keyword that eliminates the occurrences of the same data. To list all titles in

our company database, we can throw a statement as:

mysql> SELECT title FROM employee_data;

+----------------------------+

| title |

+----------------------------+

| CEO |

| Senior Programmer |

| Senior Programmer |

| Web Designer |

| Web Designer |

| Marketing Executive |

| Marketing Executive |

| Customer Service Manager |

| Finance Manager |

+----------------------------+

21 rows in set (0.00 sec)

You'll notice that the display contains multiple occurrences of certain data. The SQL

DISTINCT clause lists only unique data. Here is how you use it.

mysql> SELECT DISTINCT title FROM employee_data;

+----------------------------+

| title |

+----------------------------+

| CEO |

| Customer Service Manager |

| Finance Manager |

| Marketing Executive |

| Multimedia Programmer |

| Programmer |

| Senior Marketing Executive |

| Senior Programmer |

| Senior Web Designer |

| System Administrator |

| Web Designer |

+----------------------------+

11 rows in set (0.00 sec)

This shows we have 11 unique titles in the company. Also, you can sort the unique entries

using ORDER BY.

mysql> SELECT DISTINCT age FROM employee_data ORDER BY age;

DISTINCT is often used with the COUNT aggregate function, which we'll meet in later

sessions.

Assignments 8

1. How many unique salary packages does our company offer? List them is descending

order.
2. How many distinct first names do we have in our database?

ITS351 Database Programming Laboratory: (Laboratory #4) MySQL

Last Update: 20 August 2015

@Copyright ICT Program, Sirindhorn International Institute of Technology, Thammasat University 23/43

Finding the minimum and maximum values

MySQL provides inbuilt functions to find the minimum and maximum values. SQL provides

5 aggregate functions. They are:

1. MIN(): Minimum value

2. MAX(): Maximum value

3. SUM(): The sum of values

4. AVG(): The average values

5. COUNT(): Counts the number of rows

In this session, we'll look at finding the minimum and maximum values in a column.

Minimum value

mysql> SELECT MIN(salary) FROM employee_data;

+-------------+

| MIN(salary) |

+-------------+

| 70000 |

+-------------+

1 row in set (0.00 sec)

Maximum value

mysql> SELECT MAX(salary) FROM employee_data;

+-------------+

| MAX(salary) |

+-------------+

| 200000 |

+-------------+

1 row in set (0.00 sec)

Assignments 9

1. List the minimum perks package.

2. List the maximum salary given to a "Programmer".
3. Display the age of the oldest "Marketing Executive".
4. (Tricky!) Find the first and last names of the oldest employee.

Finding the average and sum

The SUM() aggregate function calculates the total of values in a column. You are required

to give the column name, which should be placed inside parenthesis. Let's see how much

Bignet spends on salaries.

mysql> SELECT SUM(salary) FROM employee_data;

+-------------+

| SUM(salary) |

+-------------+

| 1997000 |

+-------------+

1 row in set (0.00 sec)

Similarly, we can display the total perks given to employees.

ITS351 Database Programming Laboratory: (Laboratory #4) MySQL

Last Update: 20 August 2015

@Copyright ICT Program, Sirindhorn International Institute of Technology, Thammasat University 24/43

mysql> SELECT SUM(perks) FROM employee_data;

+------------+

| SUM(perks) |

+------------+

| 390000 |

+------------+

1 row in set (0.00 sec)

How about finding the total of salaries and perks?

mysql> SELECT SUM(salary) + SUM(perks) FROM employee_data;

+-------------------------+

| sum(salary)+ sum(perks) |

+-------------------------+

| 2387000 |

+-------------------------+

1 row in set (0.01 sec)

This shows a hidden gem of the SELECT command. You can add, subtract, multiply or

divide values. Actually, you can write full blown arithmetic expressions.

The AVG() aggregate function is employed for calculating averages of data in columns.

mysql> SELECT AVG(age) FROM employee_data;

+----------+

| avg(age) |

+----------+

| 31.6190 |

+----------+

1 row in set (0.00 sec)

This displays the average age of employees in Bignet and the following displays the

average salary.

mysql> SELECT AVG(salary) FROM employee_data;

Assignments 10

1. Display the sum of ages of employees.
2. How would you calculate the total of years of service the employees have in the

company?
3. Calculate the sum of salaries and the average age of employees who hold

"Programmer" title.
4. What do you understand from the following statement?

select (SUM(perks)/SUM(salary) * 100)

from employee_data;

Naming Columns

MySQL allows you to name the displayed columns. Then you can use more descriptive

terms. This is achieved with AS.

mysql> SELECT AVG(salary) AS 'Average Salary' FROM employee_data;

+----------------+

| Average Salary |

+----------------+

| 95095.2381 |

+----------------+

1 row in set (0.00 sec)

ITS351 Database Programming Laboratory: (Laboratory #4) MySQL

Last Update: 20 August 2015

@Copyright ICT Program, Sirindhorn International Institute of Technology, Thammasat University 25/43

Such pseudo names make the results clearer to users. The important thing to remember

here is that if you assign pseudo names that contain spaces, enclose the names in quotes.

Here is another example:

mysql> SELECT (SUM(perks)/SUM(salary) * 100) AS 'Perk Percentage'

 -> FROM employee_data;

+-----------------+

| Perk Percentage |

+-----------------+

| 19.53 |

+-----------------+

1 row in set (0.00 sec)

Counting

The COUNT() aggregate functions counts and displays the total number of entries. For

example, to count the total number of entries in the table, issue the command below.

mysql> SELECT COUNT(*) FROM employee_data;

+----------+

| COUNT(*) |

+----------+

| 21 |

+----------+

1 row in set (0.00 sec)

As you have learnt, the * sign means "all columns". Now, let's count the total number of

employees who hold the "Programmer" title.

mysql> SELECT COUNT(*) FROM employee_data

 -> WHERE title = 'Programmer';

+----------+

| COUNT(*) |

+----------+

| 4 |

+----------+

1 row in set (0.00 sec)

The GROUP BY clause

The GROUP BY clause allows us to group similar data. Thus, to list all unique titles in our

table we can issue

mysql> SELECT title FROM employee_data GROUP BY title;

You'll notice that this is similar to the usage of DISTINCT, which we encountered in a

previous session. Okay, here is how you can count the number of employees with different

titles.

ITS351 Database Programming Laboratory: (Laboratory #4) MySQL

Last Update: 20 August 2015

@Copyright ICT Program, Sirindhorn International Institute of Technology, Thammasat University 26/43

mysql> SELECT title, COUNT(*) FROM employee_data GROUP BY title;

+----------------------------+----------+

| title | count(*) |

+----------------------------+----------+

| CEO | 1 |

| Customer Service Manager | 1 |

| Finance Manager | 1 |

| Marketing Executive | 3 |

| Multimedia Programmer | 3 |

| Programmer | 4 |

| Senior Marketing Executive | 1 |

| Senior Programmer | 2 |

| Senior Web Designer | 1 |

| System Administrator | 2 |

| Web Designer | 2 |

+----------------------------+----------+

11 rows in set (0.01 sec)

For the command above, MySQL first groups different titles and then executes count on

each group. “GROUP BY” can also be applied to any other aggregate functions e.g., sum(),

min().

Sorting the data

Let's find and list the number of employees holding different titles and sort them using

ORDER BY.

mysql> SELECT title, COUNT(*) AS Number FROM employee_data

 -> GROUP BY title

 -> ORDER BY Number;

+----------------------------+--------+

| title | Number |

+----------------------------+--------+

| CEO | 1 |

| Customer Service Manager | 1 |

| Finance Manager | 1 |

| Senior Marketing Executive | 1 |

| Senior Web Designer | 1 |

| Senior Programmer | 2 |

| System Administrator | 2 |

| Web Designer | 2 |

| Marketing Executive | 3 |

| Multimedia Programmer | 3 |

| Programmer | 4 |

+----------------------------+--------+

11 rows in set (0.00 sec)

Assignments 11

1. Count the number of employees who have been with Bignet for four or more years.
2. Count employees based on their ages.

3. Modify the above so that the ages are listed in a descending order.
4. Find the average age of employees in different departments (titles).
5. Change the above statement so that the data is displayed in a descending order of

average ages.
6. Find and list the percentage perk (perk/salary X 100) for each employee with the %

perks sorted in a descending order.

ITS351 Database Programming Laboratory: (Laboratory #4) MySQL

Last Update: 20 August 2015

@Copyright ICT Program, Sirindhorn International Institute of Technology, Thammasat University 27/43

HAVING Clause

To list the average salary of employees in different departments (titles), we use the GROUP

BY clause, as in:

mysql> SELECT title, AVG(salary)

 -> FROM employee_data

 -> GROUP BY title;

+----------------------------+-------------+

| title | AVG(salary) |

+----------------------------+-------------+

| CEO | 200000.0000 |

| Customer Service Manager | 70000.0000 |

| Finance Manager | 120000.0000 |

| Marketing Executive | 77333.3333 |

| Multimedia Programmer | 83333.3333 |

| Programmer | 75000.0000 |

| Senior Marketing Executive | 120000.0000 |

| Senior Programmer | 115000.0000 |

| Senior Web Designer | 110000.0000 |

| System Administrator | 95000.0000 |

| Web Designer | 87500.0000 |

+----------------------------+-------------+

11 rows in set (0.00 sec)

Now, suppose you want to list only the departments where the average salary is more than

$100000, you can't do it, even if you assign a pseudo name to AVG(salary) column. A short

explanation is that the WHERE clause is used for filtering rows. However, AVG(salary) is

not a value of any row. That is, it is an aggregated value resulted from summarizing the

data of many rows. Here, the HAVING clause comes to our rescue.

mysql> SELECT title, AVG(salary)

 -> FROM employee_data

 -> GROUP BY title

 -> HAVING AVG(salary) > 100000;

+----------------------------+-------------+

| title | AVG(salary) |

+----------------------------+-------------+

| CEO | 200000.0000 |

| Finance Manager | 120000.0000 |

| Senior Marketing Executive | 120000.0000 |

| Senior Programmer | 115000.0000 |

| Senior Web Designer | 110000.0000 |

+----------------------------+-------------+

5 rows in set (0.00 sec)

Assignments 12

1. List departments and average ages where the average age in more than 30.

ITS351 Database Programming Laboratory: (Laboratory #4) MySQL

Last Update: 20 August 2015

@Copyright ICT Program, Sirindhorn International Institute of Technology, Thammasat University 28/43

4 More about MySQL

The MySQL SELECT command is like a print or write command of other languages. You can

ask it to display text strings, numeric data, the results of mathematical expressions etc.

Displaying the MySQL version number

mysql> SELECT version();

+--------------------------+

| version() |

+--------------------------+

| 5.0.51b-community-nt-log |

+--------------------------+

1 row in set (0.00 sec)

Displaying the current date and time

mysql> SELECT now();

+---------------------+

| now() |

+---------------------+

| 2012-08-18 17:12:34 |

+---------------------+

1 row in set (0.00 sec)

Displaying the current Day, Month and Year

mysql> SELECT DAYOFMONTH(CURRENT_DATE);

+--------------------------+

| DAYOFMONTH(CURRENT_DATE) |

+--------------------------+

| 18 |

+--------------------------+

1 row in set (0.01 sec)

mysql> SELECT MONTH(CURRENT_DATE);

+---------------------+

| MONTH(CURRENT_DATE) |

+---------------------+

| 8 |

+---------------------+

1 row in set (0.00 sec)

mysql> SELECT YEAR(CURRENT_DATE);

+--------------------+

| YEAR(CURRENT_DATE) |

+--------------------+

| 2012 |

+--------------------+

1 row in set (0.00 sec)

ITS351 Database Programming Laboratory: (Laboratory #4) MySQL

Last Update: 20 August 2015

@Copyright ICT Program, Sirindhorn International Institute of Technology, Thammasat University 29/43

Displaying Text Strings

mysql> SELECT 'I Love MySQL';

+--------------+

| I Love MySQL |

+--------------+

| I Love MySQL |

+--------------+

1 row in set (0.00 sec)

Obviously you can provide pseudo names for these columns using AS.

mysql> SELECT 'Manish Sharma' AS Name;

+---------------+

| Name |

+---------------+

| Manish Sharma |

+---------------+

1 row in set (0.00 sec)

Evaluating Expressions

mysql> SELECT ((4 * 4) / 10) + 25;

+----------------------+

| ((4 * 4) / 10) + 25 |

+----------------------+

| 26.60 |

+----------------------+

1 row in set (0.00 sec)

Concatenation

With SELECT you can concatenate values for display. CONCAT accepts arguments between

parentheses. These can be column names or plain text strings. Text strings have to be

surrounded with quotes (single or double).

mysql> SELECT CONCAT(f_name, " ", l_name)

 -> FROM employee_data

 -> WHERE title = 'Programmer';

+-----------------------------+

| CONCAT(f_name, " ", l_name) |

+-----------------------------+

| Fred Kruger |

| John MacFarland |

| Edward Sakamuro |

| Alok Nanda |

+-----------------------------+

4 rows in set (0.00 sec)

Assignments 13

1. Use the SELECT command to evaluate 4 X 4 X 4 and name the column “Cube of 4”.

2. Display your name with SELECT.

ITS351 Database Programming Laboratory: (Laboratory #4) MySQL

Last Update: 20 August 2015

@Copyright ICT Program, Sirindhorn International Institute of Technology, Thammasat University 30/43

5 MySQL Mathematical Functions

In addition to the four basic arithmetic operations addition (+), subtraction (-),

multiplication (*) and division (/), MySQL also has the modulo (%) operator. This

calculates the remainder left after division.

mysql> SELECT 87 % 9;

+--------+

| 87 % 9 |

+--------+

| 6 |

+--------+

1 row in set (0.00 sec)

MOD(x, y)
Display the remainder of x divided by y, the same as the modulus operator.

mysql> SELECT MOD(37, 13);

+-------------+

| MOD(37, 13) |

+-------------+

| 11 |

+-------------+

1 row in set (0.00 sec)

ABS(x)

Calculate the Absolute value of number x. Thus, if x is negative its positive value is

returned.

mysql> SELECT ABS(-4.05022);

+---------------+

| ABS(-4.05022) |

+---------------+

| 4.05022 |

+---------------+

1 row in set (0.00 sec)

SIGN(x)

Return 1, 0 or -1 when x is positive, zero or negative, respectively.

mysql> SELECT SIGN(-34.22);

+--------------+

| SIGN(-34.22) |

+--------------+

| -1 |

+--------------+

1 row in set (0.00 sec)

mysql> SELECT SIGN(0);

+---------+

| SIGN(0) |

+---------+

| 0 |

+---------+

1 row in set (0.00 sec)

ITS351 Database Programming Laboratory: (Laboratory #4) MySQL

Last Update: 20 August 2015

@Copyright ICT Program, Sirindhorn International Institute of Technology, Thammasat University 31/43

POWER(x,y)

Calculate the value of x raised to the power of y.

mysql> SELECT POWER(4,3);

+------------+

| POWER(4,3) |

+------------+

| 64.000000 |

+------------+

1 row in set (0.00 sec)

SQRT(x)

Calculate the square root of x.

mysql> SELECT SQRT(3);

+----------+

| SQRT(3) |

+----------+

| 1.732051 |

+----------+

1 row in set (0.00 sec)

ROUND(x) and ROUND(x,y)

Returns the value of x rounded to the nearest integer. ROUND can also accept an

additional argument y that will round x to y decimal places.

mysql> SELECT ROUND(14.492);

+---------------+

| ROUND(14.492) |

+---------------+

| 14 |

+---------------+

1 row in set (0.00 sec)

mysql> SELECT ROUND(4.5002);

+---------------+

| ROUND(4.5002) |

+---------------+

| 5 |

+---------------+

1 row in set (0.00 sec)

mysql> SELECT ROUND(-12.773);

+----------------+

| ROUND(-12.773) |

+----------------+

| -13 |

+----------------+

1 row in set (0.00 sec)

ITS351 Database Programming Laboratory: (Laboratory #4) MySQL

Last Update: 20 August 2015

@Copyright ICT Program, Sirindhorn International Institute of Technology, Thammasat University 32/43

FLOOR(x)

Return the largest integer that is less than or equal to x.

mysql> SELECT FLOOR(23.544);

+---------------+

| FLOOR(23.544) |

+---------------+

| 23 |

+---------------+

1 row in set (0.00 sec)

mysql> SELECT FLOOR(-18.4);

+--------------+

| FLOOR(-18.4) |

+--------------+

| -19 |

+--------------+

1 row in set (0.00 sec)

CEILING(x)

Return the smallest integer that is great than or equal to x.

mysql> SELECT CEILING(23.544);

+-----------------+

| CEILING(23.544) |

+-----------------+

| 24 |

+-----------------+

1 row in set (0.00 sec)

mysql> SELECT CEILING(-18.4);

+----------------+

| CEILING(-18.4) |

+----------------+

| -18 |

+----------------+

1 row in set (0.00 sec)

TAN(x), SIN(x) and COS(x)

Calculate the trigonometric ratios for angle x (measured in radians).

mysql> SELECT SIN(0);

+----------+

| SIN(0) |

+----------+

| 0.000000 |

+----------+

1 row in set (0.00 sec)

mysql> SELECT ROUND(7.235651, 3);

+--------------------+

| ROUND(7.235651, 3) |

+--------------------+

| 7.236 |

+--------------------+

1 row in set (0.00 sec)

ITS351 Database Programming Laboratory: (Laboratory #4) MySQL

Last Update: 20 August 2015

@Copyright ICT Program, Sirindhorn International Institute of Technology, Thammasat University 33/43

6 MySQL Update Functions

The SQL UPDATE command updates the data in tables. Its format is quite simple.

UPDATE table_name

 SET column_name1 = value1,

 column_name2 = value2, ...

[WHERE conditions];

Obviously, like other SQL commands, you can type in one line or multiple lines. Let's look

at some examples. Bignet has been doing good business. The CEO increases his salary by

$20000 and perks by $5000. His previous salary was $200000 and perks were $50000.

mysql> UPDATE employee_data

 -> SET salary=220000, perks=55000

 -> WHERE title='CEO';

Query OK, 1 row affected (0.02 sec)

Rows matched: 1 Changed: 1 Warnings:

You can test this out by listing the data in the table.

mysql> SELECT salary, perks FROM employee_date

 -> WHERE title='CEO';

+--------+-------+

| salary | perks |

+--------+-------+

| 220000 | 55000 |

+--------+-------+

1 row in set (0.00 sec)

Actually, you don't need to know the previous salary explicitly. You can be cheeky and use

arithmetic operators. Thus, the following statement would have done the same job without

us knowing the original data beforehand.

mysql> UPDATE employee_data

 -> SET salary = salary + 20000,

 -> perks = perks + 5000

 -> WHERE title='CEO';

Query OK, 1 row affected (0.01 sec)

Rows matched: 1 Changed: 1 Warnings: 0

Another progressive (???) step Bignet takes is changing the titles of Web Designer to Web

Developer.

mysql> UPDATE employee_data

 -> SET title = 'Web Developer'

 -> WHERE title = 'Web Designer';

Query OK, 2 rows affected (0.00 sec)

Rows matched: 2 Changed: 2 Warnings: 0

It's important that you take a long hard look at the condition part in the

statement before executing update; else you might update the wrong data. Also, an

UPDATE statement without conditions will update all the data in the column in all rows! Be

very careful.

ITS351 Database Programming Laboratory: (Laboratory #4) MySQL

Last Update: 20 August 2015

@Copyright ICT Program, Sirindhorn International Institute of Technology, Thammasat University 34/43

Assignments 14

1. Our CEO falls in love with the petite Web Developer, Anamika Pandit. She now wants
her last name to be changed to 'Sharma'.

2. All Multimedia Programmers now want to be called Multimedia Specialists.
3. After his marriage, the CEO gives everyone a raise. Increase the salaries of all

employees (except the CEO) by $10000.

7 MySQL Date Data Type (I)

Till now we've dealt with text (varchar) and numbers (int) data types. To understand date

type, we'll create one more table. Create employee_per.dat file below and follow the

instructions. The file contain the CREATE table command as well as the INSERT statements.

employee_per.dat

CREATE TABLE employee_per (e_id int unsigned not null primary key, address

varchar(60), phone int, p_email varchar(60), birth_date DATE, sex ENUM('M', 'F'),

m_status ENUM('Y','N'), s_name varchar(40), children int);

INSERT INTO employee_per (e_id, address, phone, p_email, birth_date, sex, m_status,

s_name) values (1, '202, Holder Street', 7176167, 'nettish@hotmail.com', '1972-03-

16', 'M', 'Y', 'Anamika Sharma');

INSERT INTO employee_per (e_id, address, phone, p_email, birth_date, sex, m_status,

s_name, children) values (2, '1232 Marker Hotel Road', 5553312,

'johnny4@hotmail.com', '1968-04-02', 'M', 'Y', 'Jane Donner', 3);

INSERT INTO employee_per (e_id, address, phone, p_email, birth_date, sex, m_status,

s_name, children) values (3, '90 Potter Avenue', 4321211, 'gpillai@youremail.com',

'1968-09-22', 'M', 'Y', 'Sandhya Pillai', 2);

INSERT INTO employee_per (e_id, address, phone, p_email, birth_date, sex, m_status,

s_name) values (4, '202, Holder Street', 7176167, 'twinkleinmyeyes@hotmail.com',

'1972-08-09', 'F', 'Y', 'Manish Sharma');

INSERT INTO employee_per (e_id, address, phone, p_email, birth_date, sex, m_status)

values (5, 'Apartment #8, Fuhrer Building, Cobb Street', 8973242,

'holychild@heavenlymail.com', '1974-10-13', 'F', 'N');

INSERT INTO employee_per (e_id, address, phone, p_email, birth_date, sex, m_status)

values (6, '46 Elm Street', '6666666', 'killeratlarge@elmmail.com', '1969-12-31',

'M', 'N');

INSERT INTO employee_per (e_id, address, phone, p_email, birth_date, sex, m_status,

s_name, children) values (7, '432 Mercury Avenue', 7932232, 'macmohan@hotmail.com',

'1966-8-20', 'M', 'Y', 'Mary Shelly', '3');

INSERT INTO employee_per (e_id, address, phone, p_email, birth_date, sex, m_status)

values (8, '88 Little Tokyo', 5442994, 'eddies@givememail.com', '1975-01-12', 'M',

'N');

INSERT INTO employee_per (e_id, address, phone, p_email, birth_date, sex, m_status,

s_name, children) values (9, '64 Templeton Road', 4327652,

'nandy@physicalemail.com', '1968-05-19', 'M', 'Y', 'Manika Nanda', '1');

INSERT INTO employee_per (e_id, address, phone, p_email, birth_date, sex, m_status)

values (10, '134 Metro House, Handenson Street', 5552376, 'rajabihn@hotmail.com',

'1967-07-06', 'M', 'N');

INSERT INTO employee_per (e_id, address, phone, p_email, birth_date, sex, m_status,

s_name, children) values (11, '1 Graceland, Aaron Avenue', 5433879,

'soundofsilence@boxer.net', '1957-11-04', 'M', 'Y', 'Muriel Lovelace', '4');

INSERT INTO employee_per (e_id, address, phone, p_email, birth_date, sex, m_status,

s_name, children) values (12, '97 Oakland Road', 5423311,

'kingarthur@roundtable.org', '1968-02-15', 'M', 'Y', 'Rina Brighton', 3);

INSERT INTO employee_per (e_id, address, phone, p_email, birth_date, sex, m_status,

s_name, children) values (13, '543 Applegate Lane', 3434343, 'levy@coolmail.com',

'1968-09-03', 'F', 'Y', 'Matt Shikari', '2');

ITS351 Database Programming Laboratory: (Laboratory #4) MySQL

Last Update: 20 August 2015

@Copyright ICT Program, Sirindhorn International Institute of Technology, Thammasat University 35/43

INSERT INTO employee_per (e_id, address, phone, p_email, birth_date, sex, m_status)

values (14, '765 Flasher Street', 7432433, 'tinkertone@email.com', '1965-04-28',

'M', 'N');

INSERT INTO employee_per (e_id, address, phone, p_email, birth_date, sex, m_status,

s_name, children) values (15, '98 Gunfoundry', 6500787, 'danny@foolhardy.com',

'1966-06-23', 'M', 'Y', 'Betty Cudly', 3);

INSERT INTO employee_per (e_id, address, phone, p_email, birth_date, sex, m_status,

s_name, children) values (16, '#5 Comely Homes', 5432132, 'mikeharper@coldmail.com',

'1964-03-06', 'M', 'Y', 'Stella Stevens', 2);

INSERT INTO employee_per (e_id, address, phone, p_email, birth_date, sex, m_status,

s_name, children) values (17, '652 Devon Building, 6th Jake Avenue', 5537885,

'mona@darling.com', '1970-04-18', 'F', 'Y', 'Edgar Alan', 1);

INSERT INTO employee_per (e_id, address, phone, p_email, birth_date, sex, m_status)

values (18, 'Apartment #9, Together Towers', 5476565, 'odessey2000@hotmail.com',

'1973-10-09', 'M', 'N');

INSERT INTO employee_per (e_id, address, phone, p_email, birth_date, sex, m_status)

values (19, 'Apartment #9, Together Towers', 5476565, 'jirvine@hotteremail', '1973-

1-20', 'M', 'N');

INSERT INTO employee_per (e_id, address, phone, p_email, birth_date, sex, m_status)

values (20, '90 Comfy Town', 7528326, 'helper@more.org', '1968-01-25', 'F', 'N');

INSERT INTO employee_per (e_id, address, phone, p_email, birth_date, sex, m_status,

s_name, children) values (21, '4329 Eucalyptus Avenue', 4254863,

'moneymatters@coldcash.com', '1964-06-13', 'M', 'Y', 'Ruby Richer', 2);

Inserting data into employee_per table with employee_per.dat file

On Windows

1. Move the file to c:\mysql\bin. Make sure MySQL is running.

2. Issue the following command

mysql dbname < employee_per.dat

On Linux

1. Move to the directory of the downloaded file. Issue the following command

mysql dbname < employee_per.dat –u username -p

2. Enter your password.

A new table, employee_per, will be created. The details of the table can be displayed

with DESCRIBE (or desc) command.

mysql> DESCRIBE employee_per;

+------------+------------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+------------+------------------+------+-----+---------+-------+

| e_id | int(10) unsigned | | PRI | 0 | |

| address | varchar(60) | YES | | NULL | |

| phone | int(11) | YES | | NULL | |

| p_email | varchar(60) | YES | | NULL | |

| birth_date | date | YES | | NULL | |

| sex | enum('M','F') | YES | | NULL | |

| m_status | enum('Y','N') | YES | | NULL | |

| s_name | varchar(40) | YES | | NULL | |

| children | int(11) | YES | | NULL | |

+------------+------------------+------+-----+---------+-------+

9 rows in set (0.00 sec)

Notice that column birth_date has date as column type.

ITS351 Database Programming Laboratory: (Laboratory #4) MySQL

Last Update: 20 August 2015

@Copyright ICT Program, Sirindhorn International Institute of Technology, Thammasat University 36/43

e_id: Employee ids, same as that in table employee_data

address: Addresses of employees

phone: Phone numbers

p_email: Personal email addresses

birth_date: Birth dates

sex: The sex of the employee, Male or Female

m_status: Marital status: Yes or No.

s_name: Name of Spouse (NULL if employee is unmarried)

children: Number of children (NULL if employee is unmarried)

Characteristics of Date

MySQL dates are ALWAYS represented with the year followed by the month and then the

date. Often you'll find dates written as YYYY-MM-DD, where YYYY is 4 digit year, MM is 2

digit month and DD, 2 digit date.

Operations on Date

Date column type allows for several operations such as sorting, testing conditions using

comparison operators etc.

Using = or != operators.

mysql> SELECT p_email, phone FROM employee_per

 -> WHERE birth_date = '1969-12-31';

+---------------------------+---------+

| p_email | phone |

+---------------------------+---------+

| killeratlarge@elmmail.com | 6666666 |

+---------------------------+---------+

1 row in set (0.00 sec)

Note: MySQL requires the dates to be enclosed in quotes.

Using >= and <= operators

mysql> SELECT e_id, birth_date FROM employee_per

 -> WHERE birth_date >= '1970-01-01';

+------+------------+

| e_id | birth_date |

+------+------------+

| 1 | 1972-03-16 |

| 4 | 1972-08-09 |

| 5 | 1974-10-13 |

| 8 | 1975-01-12 |

| 17 | 1970-04-18 |

| 18 | 1973-10-09 |

| 19 | 1973-01-20 |

+------+------------+

7 rows in set (0.00 sec)

Specifying ranges

mysql> SELECT e_id, birth_date FROM employee_per

 -> WHERE birth_date BETWEEN '1969-01-01' AND '1974-01-01';

+------+------------+

| e_id | birth_date |

+------+------------+

| 1 | 1972-03-16 |

| 4 | 1972-08-09 |

| 6 | 1969-12-31 |

ITS351 Database Programming Laboratory: (Laboratory #4) MySQL

Last Update: 20 August 2015

@Copyright ICT Program, Sirindhorn International Institute of Technology, Thammasat University 37/43

| 17 | 1970-04-18 |

| 18 | 1973-10-09 |

| 19 | 1973-01-20 |

+------+------------+

6 rows in set (0.00 sec)

The following command gets the same result as above.

mysql> SELECT e_id, birth_date FROM employee_per

 -> WHERE birth_date >= '1969-01-01' AND birth_date <= '1974-01-01';

Assignments 15

1. List all employee ids and birth dates that were born before 1965.
2. Display Ids and birth dates of employees born in and between 1970 and 1972.

Using Date to sort data

mysql> SELECT e_id, birth_date FROM employee_per

 -> ORDER BY birth_date;

+------+------------+

| e_id | birth_date |

+------+------------+

| 11 | 1957-11-04 |

| 16 | 1964-03-06 |

| 21 | 1964-06-13 |

| 14 | 1965-04-28 |

| 19 | 1973-01-20 |

| 18 | 1973-10-09 |

| 5 | 1974-10-13 |

| 8 | 1975-01-12 |

+------+------------+

21 rows in set (0.00 sec)

Selecting data using Date

Here is how to select employees born in March.

mysql> SELECT e_id, birth_date FROM employee_per

 -> WHERE MONTH(birth_date) = 3;

+------+------------+

| e_id | birth_date |

+------+------------+

| 1 | 1972-03-16 |

| 16 | 1964-03-06 |

+------+------------+

2 rows in set (0.00 sec)

Alternatively, we can use month names instead of numbers.

mysql> SELECT e_id, birth_date FROM employee_per

 -> WHERE MONTHNAME(birth_date) = 'January';

+------+------------+

| e_id | birth_date |

+------+------------+

| 8 | 1975-01-12 |

| 19 | 1973-01-20 |

| 20 | 1968-01-25 |

ITS351 Database Programming Laboratory: (Laboratory #4) MySQL

Last Update: 20 August 2015

@Copyright ICT Program, Sirindhorn International Institute of Technology, Thammasat University 38/43

+------+------------+

3 rows in set (0.00 sec)

Be careful when using month names as they are case sensitive. Thus, January will work but

JANUARY will not! Similarly, you can select employees born in a specific year or under

specific dates.

mysql> SELECT e_id, birth_date FROM employee_per

 -> WHERE YEAR(birth_date) = 1972;

+------+------------+

| e_id | birth_date |

+------+------------+

| 1 | 1972-03-16 |

| 4 | 1972-08-09 |

+------+------------+

2 rows in set (0.00 sec)

mysql> SELECT e_id, birth_date FROM employee_per

 -> WHERE DAYOFMONTH(birth_date) = 20;

+------+------------+

| e_id | birth_date |

+------+------------+

| 7 | 1966-08-20 |

| 19 | 1973-01-20 |

+------+------------+

2 rows in set (0.00 sec)

Using current date

We had seen in the session on SELECT statement that current date, month and year can be

displayed with CURRENT_DATE argument to DAYOFMONTH(), MONTH() and YEAR()

clauses, respectively. The same can be used to select data from tables.

mysql> SELECT e_id, birth_date FROM employee_per

 -> WHERE MONTH(birth_date) = MONTH(CURRENT_DATE);

+------+------------+

| e_id | birth_date |

+------+------------+

| 10 | 1967-07-06 |

+------+------------+

1 rows in set (0.00 sec)

Assignments 16

1. List ids, birth dates and emails of employees born in April.
2. Display Ids, birth dates and spouse names of employees born in 1969 and sort the

entries on the basis of their spouse names.
3. List the employee ids for employees born under the current month.
4. How many unique birth years do we have?
5. Display a list of unique birth years and the number of employees born under each.
6. How many employees were born under each month? The display should have month

names (NOT numbers) and the entries should be sorted with the month having the

largest number listed first.

ITS351 Database Programming Laboratory: (Laboratory #4) MySQL

Last Update: 20 August 2015

@Copyright ICT Program, Sirindhorn International Institute of Technology, Thammasat University 39/43

Null Column Type

The NULL column type is special in many ways. To insert a NULL value, just leave the

column name from the INSERT statement. Columns have NULL as default unless specified

by NOT NULL. You can have null values for integers as well as text or binary data.

Comparisons for NULL can be done with IS NULL or IS NOT NULL.

mysql> SELECT e_id, children FROM employee_per

 -> WHERE children IS NOT NULL;

+------+----------+

| e_id | children |

+------+----------+

| 2 | 3 |

| 3 | 2 |

| 7 | 3 |

| 9 | 1 |

| 11 | 4 |

| 12 | 3 |

| 13 | 2 |

| 15 | 3 |

| 16 | 2 |

| 17 | 1 |

| 21 | 2 |

+------+----------+

11 rows in set (0.00 sec)

The above lists ids and no. of children of all employees who have children.

Assignments 17

1. List the ids and spouse names of all employees who are married.
2. Change the above sql statement so that the display is sorted on spouse names.
3. How many employees do we have under each sex (male and female)?
4. How many of our employees are married and unmarried?
5. Find the total number of children of all employees.

8 MySQL Table Joins

Till now, we've used SELECT to retrieve data from only one table. However, we can extract

data from two or more tables using a single SELECT statement.

The strength of RDBMS lies in allowing us to relate data from one table with data from

another. This correlation can only be made if at least one column in the two tables contains

related data. In our example, the columns that contain related data are emp_id of

employee_data and e_id of employee_per. Let's conduct a table join and extract the

names (from employee_data) and spouse names (from employee_per) of married

employee.

mysql> SELECT CONCAT(f_name, " ", l_name) AS Name, s_name as 'Spouse Name'

 -> FROM employee_data, employee_per

 -> WHERE m_status = 'Y' AND emp_id = e_id;

+-----------------+-----------------+

| Name | Spouse Name |

+-----------------+-----------------+

| Manish Sharma | Anamika Sharma |

| John Hagan | Jane Donner |

| Monica Sehgal | Edgar Alan |

| Peter Champion | Ruby Richer |

+-----------------+-----------------+

13 rows in set (0.00 sec)

ITS351 Database Programming Laboratory: (Laboratory #4) MySQL

Last Update: 20 August 2015

@Copyright ICT Program, Sirindhorn International Institute of Technology, Thammasat University 40/43

The FROM clause takes the names of the two tables from which we plan to extract data.

Also, we specify that data has to be retrieved for only those rows where the emp_id and
e_id are same. Without putting “emp_id = e_id” in the WHERE clause, all possible row

combinations of the two tables will be returned (also known as a cross join).

The names of columns in the two tables are unique. However, this may not true always, in

which case we can explicitly specify column names along with table name using the dot

notation.

mysql> SELECT CONCAT(employee_data.f_name, " ", employee_data.l_name) AS Name,

 -> employee_per.s_name AS 'Spouse Name'

 -> FROM employee_data, employee_per

 -> WHERE employee_per.m_status = 'Y'

 -> AND employee_data.emp_id = employee_per.e_id;

+-----------------+-----------------+

| Name | Spouse Name |

+-----------------+-----------------+

| Manish Sharma | Anamika Sharma |

| John Hagan | Jane Donner |

| Ganesh Pillai | Sandhya Pillai |

...

| Mike Harper | Stella Stevens |

| Monica Sehgal | Edgar Alan |

| Peter Champion | Ruby Richer |

+-----------------+-----------------+

13 rows in set (0.00 sec)

Caution!! The following commands in Section 8 and 9 are used to delete your

data, tables and databases. It is not necessary to practice these commands;

otherwise your data will be lost.

9 Delete & Drop entries from MySQL

The SQL delete statement requires the table name and optional conditions.

DELETE FROM table_name [WHERE conditions];

NOTE: If you don't specify any conditions ALL THE DATA IN THE TABLE WILL BE

DELETED!!!

One of the Multimedia specialists 'Hasan Rajabi' (employee id 10) leaves the company.

We'll delete his entry.

mysql> DELETE from employee_data

 -> WHERE emp_id = 10;

Query OK, 1 row affected (0.00 sec)

ITS351 Database Programming Laboratory: (Laboratory #4) MySQL

Last Update: 20 August 2015

@Copyright ICT Program, Sirindhorn International Institute of Technology, Thammasat University 41/43

10 Dropping tables

To remove all entries from the table we can issue the DELETE statement without any

conditions.

mysql> DELETE from employee_data;

Query OK, 0 rows affected (0.00 sec)

However, this does not delete the table. The table still remains, which you can check with

SHOW TABLES;

mysql> SHOW TABLES;

+---------------------+

| Tables in employees |

+---------------------+

| employee_data |

+---------------------+

1 rows in set (0.00 sec)

To delete the table, we issue a DROP table command.

mysql> DROP TABLE employee_data

Query OK, 0 rows affected (0.01 sec)

Now, this table is completely deleted and will not be shown with SHOW TABLES.

11 MySQL database Column Types

The three major types of column types used in MySQL are

1. Integer

2. Text

3. Date

Choosing a column data type is very important in order to achieve speed, effective storage

and retrieval.

Numeric Column Types

In addition to int (Integer data type), MySQL also provides floating-point and double

precision numbers. Each integer type can also be UNSIGNED and/or AUTO_INCREMENT.

 TINYINT: very small numbers; suitable for ages. Actually, we should have used

this data type for employee ages and number of children. Can store numbers

between 0 to 255 if UNSIGNED clause is applied, else the range is between -128 to

127.

 SMALLINT: Suitable for numbers between 0 to 65535 (UNSIGNED) or -32768 to

32767.

 MEDIUMINT: 0 to 16777215 with UNSIGNED clause or -8388608 to 8388607.

 INT: UNSIGNED integers fall between 0 to 4294967295 or -2147683648 to

2147683647.

 BIGINT: Huge numbers. (-9223372036854775808 to 9223372036854775807)

 FLOAT: Floating point numbers (single precision)

 DOUBLE: Floating point numbers (double precision)

 DECIMAL:Floating point numbers represented as strings.

ITS351 Database Programming Laboratory: (Laboratory #4) MySQL

Last Update: 20 August 2015

@Copyright ICT Program, Sirindhorn International Institute of Technology, Thammasat University 42/43

Date and time column types

 DATE: YYYY-MM-DD (Four digit year followed by two digit month and date)

 TIME: hh:mm:ss (Hours:Minutes:Seconds)

 DATETIME: YYYY-MM-DD hh:mm:ss (Date and time separated by a space

character)

 TIMESTAMP: YYYYMMDDhhmmss

 YEAR: YYYY (4 digit year)

Text data type

Text can be fixed length (char) or variable length strings. Also, text comparisions can be

case sensitive or insensitive depending on the type you choose.

 CHAR(x): where x can range from 1 to 255.

 VARCHAR(x): x ranges from 1 - 255

 TINYTEXT: small text, case insensitive

 TEXT: slightly longer text, case insensitive

 MEDIUMTEXT: medium size text, case insensitive

 LONGTEXT: really long text, case insensitive

 TINYBLOB: Blob means a Binary Large OBject. You should use blobs for case

sensitive searches.

 BLOB: slightly larger blob, case sensitive.

 MEDIUMBLOB: medium sized blobs, case sensitive.

 LONGBLOB: really huge blobs, case sensitive.

 ENUM: Enumeration data type has fixed values and the column can take only one

value from the given set. The values are placed in parenthesis following ENUM

declaration. For example, the marital status column we encountered in

employee_per table is of an ENUM.

m_status ENUM("Y", "N")

Thus, m_status column will take only Y or N as values. If you specify any other

value with the INSERT statement, MYSQL will not return an error, it just inserts a

NULLvalue in the column.

 SET: An extension of ENUM. Values are fixed and placed after the SET declaration;

however, SET columns can take multiple values from the values provided. Consider

a column with the SET data type as

hobbies SET ("Reading", "Surfing", "Trekking", "Computing")

You can have 0 or all the four values in the column.

INSERT INTO tablename (hobbies) values ("Surfing,Computing");

ITS351 Database Programming Laboratory: (Laboratory #4) MySQL

Last Update: 20 August 2015

@Copyright ICT Program, Sirindhorn International Institute of Technology, Thammasat University 43/43

Practice

Student

PK StdID

FName

LName

Sex

Status

Curriculum

Program

DOB

Address

TelNo Course

PK CID

CCode

CNum

CName

Credit

Register

PK RID

FK1 StdID

FK2 SID

Grade

Section

PK SID

FK1 CID

SecNo

Year

Semester

Figure 1: Entity-Relationship Diagram for a Small Registration Database

The SQL commands for creating the table and insert the data are already provided for you.

You can import the SQL commands to your database by using the above command as

introduced in manual or by using these commands after you are at the mysql prompt.

mysql> source createtbls.sql

mysql> LOAD DATA LOCAL INFILE 'Student.txt' INTO TABLE Student;

mysql> LOAD DATA LOCAL INFILE 'Course.txt' INTO TABLE Course;

mysql> LOAD DATA LOCAL INFILE 'Section.txt' INTO TABLE Section;

mysql> LOAD DATA LOCAL INFILE 'Register.txt' INTO TABLE Register;

1. Write a query to show a list of IT students and order by their first name.

2. Write a query to show a list of students who do not live in London.

3. Write a query to calculate average GPA for each semester for each student.

4. Write a query to count the number of courses each student took and got grade.

5. Write a query to find the maximum grade that each student used to get.

6. Write a query to show a list of students with the order of their average GPA.

7. Write a query to show a list of students who do not register any course until

now.

8. Write a query to show the age of each student.

