Applied Artificial Optimization Algorithm in
Design Flaws Detection

Sakorn Mekruksavanich
Department of Computer Engineering
School of Information and Communication Technology
University of Phayao, Phayao, Thailand
sakorn.me @up.ac.th

Abstract—The detection of design flaws is one of the most
important aspects of software quality control, and the process
should therefore be an integral part of the development and also
the maintenance of software. It is possible to lower costs and
extend the useful like cycle of the software simply by detecting
design flaws at an early stage, and therefore attempts have
been made to automate the procedures involved in detecting
and fixing these flaws. One of the most common ways of
detecting flaws is through the use of heuristic metrics which use
predetermined standards as a means of analyzing the findings.
While the approach can work successfully, the problem lies in
the determination of those standards, or thresholds. This research
study seeks to develop an enhanced method to improve threshold
determination to be applied in flaw detection using metric-based
designs. Accordingly, for each metric, an algorithm was employed
for optimization of the contribution metrics to determine the
threshold. The model produced threshold values which could then
be adjusted to fit the requirements of the software data input.
The findings from the experiments revealed that this approach
could generate more appropriate thresholds for application in
this context. In addition, the technique was relatively simple and
could be used with different software programming languages,
reducing the implementation time, and eliminating the need for
the specialist expert support which would have traditionally been
required in metric-based detection methods.

Index Terms—Design Flaws, Detection, Refactoring, Artificial
Optimization Algorithm

I. INTRODUCTION

Software is critical for human life today, and the aim
of software development is to create efficient and reliable
software to ease the burdens in peoples lives, resulting in
greater productivity. While software efficiency may not always
seem as obvious as remarkable inventions such as airplanes,
combustion engines, or the printing press, the impact can be
just as significant, as it can affect every aspect of our lives
today, encompassing, work, leisure, entertainment, health, and
so forth. Although developers have been creating software now
for around 75 years, there are still problems which arise during
the development stage which lead to flaws. In particular, there
are flaws which arise during the design of new software, which
are known as design flaws [1].

Design flaws are those which incorporate problems within
the rules or architecture of the software, and thus have a
negative effect upon the overall structure quality of the design,
leading to ongoing problems in the software development life
cycle. Design flaws might not be described as wholly incorrect,

and might not cause the failure of a program, but they can lead
to slower operational use of a program and lead to a greater
risk of errors arising in the future. Design flaws have long been
seen as indicators of poor design and program selection, and in
some cases they are the result of designers making decision
which have sought to achieve simplicity but have involved
sub-optimal choices [2].

One common technique used to detect and solve design
flaws is the refactoring process [3]. It offers a means of
checking the simple and meaningful design of the code without
any need to change what the code actually does. The process
involves making additions and changes to the source code
through introducing reappearances, but the use of regular
refactoring is not straightforward because factored codes are
inclined towards decomposition. A number of forms can be
produced through a factored/class, duplicate code, and other
stages of mixed or discontinuous code. For all time periods,
code modification without refactoring leads to degradation.
This degradation of the source code is highly frustrating for
the programmers since it takes up their time while lowering
the overall useful lifetime of the software.

A code inspection approach performed manually can allow
early detection of design flaws [4]. The source code must
be meticulously examined, along with the documentation and
design of the software, so that the examiner might uncover
flaws based on his own long experience. Unfortunately, this
method relies upon the skill of the examiner and takes a
long time to complete. Furthermore, it cannot be scaled or
repeated. One approach which could detect design flaws is
declarative meta programming, since in such environments, it
is possible to narrow the design flaw domain to allow easier
detection with fewer metrics, or in the absence of metrics
[5]. The approach is, however, more complex in terms of
flaw identification. To simplify matters, heuristic metrics are
suggested for the identification of software design flaws. The
process of software metric detection applies a predetermined
threshold or thresholds to support the interpretation of the
process results [6], [7]. While metric-based flaw identification
can effectively detect flaws, the approach relies upon the
quality of the metrics and thresholds used, and therefore the
detection of flaws based on metrics will be variable as it relies
upon the threshold selection; there is always the potential for
false negatives or false positives if the threshold is not finely

tuned to take into account these possibilities. The threshold
must be set so as to obtain the right kind of information
about the presence of any design flaws. The developer is
therefore responsible for selecting the right approach to allow
refactoring to remove any detected design flaws. The way in
which software metrics are related to design flaws has been
widely studied, given its importance.

This study proposes a new method to support the detection
of design flaws using metrics. The concept involves finding
software design flaws by combining an optimization algorithm
with facts and rules metrics. The algorithm serves to improve
the derived contribution facts and rules of the metrics and
thus improve the thresholds for each of those metrics. The
model can thus apply threshold values which have been
selected specifically for requirements of the software data
input. Furthermore, the algorithm is able to optimize flaws in
order to verify the different software modules which comprise
the software system. The technique does use refactoring in
upgrading the software system performance in terms of the
various programming languages used which may differ in their
program structures and syntax. The performance of the model
was evaluated using three different software datasets, with the
experiments demonstrating that the new method could provide
more appropriate thresholds for use in detecting design flaws
through a metric-based technique. The simplicity and time-
saving benefits of the new system were further advantages,
along with the fact that no expertise was required for its
implementation, representing an improvement over traditional
approaches using metrics. This new concept would therefore
be useful for software project managers and developers who
would have access to reliable design flaw indicators for their
software systems.

The structure of the paper takes the following form. Section
2 presents the concepts of related background. The new
proposed methodology is discussed in detail in Section 3.
Section 4 describes the experimental studies, presents the
results, and compares the new method with other detection
approaches. Finally, conclusions are drawn in Section 5.

II. FLAW DETECTION BACKGROUND
A. Types of Design Flaws

When design flaws arise in the development of software they
can cause significant problems in the subsequent design and
maintenance of the software system. In such scenarios, Fowler
provides a new concept, whereby different design flaw types
are detected [8]. Subsequent approaches have found other
types of design flaws in programs. The software development
design flaws are very closely tied to the task of refactoring
these flaws from the code in order to improve the operational
reliability of that code. Where many developers are working
to produce a single software system, they must identify any
potential problems, which are referred to as bad smells, and
determine whether these issues are likely to pose problems
for the system with regard to functionality, maintenance,
performance, or quality. This approach can enhance the search
for laws and ease the refactoring process as flaws in the

code are addressed. Within software systems, design flaws
are often indicative of further problems. It is therefore nec-
essary to perform refactoring and then re-check the system in
order to improve its performance. One processing approach
is provided by Kent Beck [3], and enhances software quality
through design flaw refactoring. Typical design flaws and their
detection in software systems using a metrics-based approach
are described as follows:

o Large Class (LC): These classes possess large quantities
of instance variables and many lines of code. Because
they are large, they often exhibit software duplication
issues. Related metrics to detect this flaw are described
as follows:

LOC > 300 to 350, LM > 5
DIP > 3, coupling > 10

o Long Parameters (LP): Such parameters can be very
challenging to detect within software systems, since the
parameters exceed the limit. Related metrics to detect this
flaw are described as follows:

NOP >17, Y nPOM = 148, #P > AP
MinC =88, AP =3

¢ Dead Code (DC): In some cases, coding modules are
designed but are not subsequently used within the soft-
ware system. These unused modules are referred to as
dead code. The problem is that such dead code increases
the memory consumption and makes the system more
expensive to operate. Related metrics to detect this flaw
are described as follows:

UBoD = 24

o Lazy Class: These classes perform minimal work and the
number of methods is null. Related metrics to detect this
flaw are described as follows:

SoM =0, LOC <= 300, #M <=2

o Duplicate Code: When code is duplicated, it is much
more complicated to complete the updating process. It
can also lead to longer detection times when the code
appears more than once, and makes it harder to improve
the system. Related metrics to detect this flaw are de-
scribed as follows:

Total Number of Duplicate Code Block = 19

B. Biological Background

The behavior of animals in groups is often the result of
their biological and sociological need to stay together, and
hence they will herd, or swarm, or flock [9]. Each member
of the group increases its chances of survival in this way
because it is usually animals which are alone which will be
picked off by predators. Accordingly, the flock, swarm, or
herd can be characterized by its collective form of movement.
In particular, social insects such as bees or ants will form

colonies which perform swarming behavior. Swarms are self-
organizing, autonomous, and exhibit distributed functioning,
governed by a communication system whereby each individual
makes a contribution to the overall collective intelligence of
the swarm. This is known as swarm intelligence [10].

Swarm intelligence is a subsection of artificial intelligence
which examines he actions of individual components within a
decentralized system. Decentralized, or multi agent systems,
comprise physical or virtual components which must com-
municate and cooperate, sharing information in order to work
together to achieve particular tasks within their particular envi-
ronment. Models which use swarm intelligence in their design
apply natural principles from the swarming phenomenon. The
idea is not, however, to wholly replicate the natural system, but
to take ideas from the phenomenon which might be applicable
to the creation of the model [11].

C. Bee Colony Algorithm

In their natural environment, bees see food through explo-
ration of their surroundings. They gather food which can be
stored and used by their colleagues [12]. In the first step, a
small number of bees scout the general area, then return and
inform their colleagues about the location, amount, and type
of food available. Whenever they find food in a location they
have investigated they will dance in the hive to let the other
bees know what they have food, and to encourage the others
to follow them to the source. Any bee which wants to go
to the food source will follow the scout bees to the suitable
discovered flowers. The bee will then collect the nectar and
bring it back to the hive for storage. There are three potential
courses of action for the bee. The first is to give up on the food
source and wait in the hive for further guidance. The second
is to continue bringing food back from the food source alone.
The third is to encourage other bees by dancing to inform
them about the food source. At any given moment there may
be several bees dancing having found sources, so it is not clear
how the other bees decide which scout to follow. However, the
extent to which bees can be recruited to go to the food source
is always dependent upon the size and quality of the food
source. This process is ongoing, as bees locate, gather, and
store nectar.

The bee colony algorithm is designed to consist of three bee
types: scouts, employed bees, and waiting bees [13]. The bees
who leave their food sources will become scouts and search
for food. The waiting bees wait for scouts to return and dance,
then they will select a food source and become employed bees.
All food sources are then processed by employed bees, and
if they find new food sources, they will dance and encourage
waiting bees to join them. When food sources are finished,
they will be replaced by new sources discovered by scouts,
thereby ensuring that the best food sources are discovered and
used by the bees.

III. PROPOSED METHODOLOGY

In this study, the design flaw detection procedure relies
upon mixing the facts and rules metrics with the Bee Colony

Optimization algorithm so that design flaws can be identified.
This optimization approach allows verification of the software
modules so that any design flaws in the source code can
be determined. The algorithm is able to improve both the
metric thresholds and the derived contribution facts and rules
of the metrics. The model threshold values are then selected
to fit the requirements of the software data input. Application
of the fact and rule metrics supports the processing of the
source code and identification of the software modules in many
different programming languages. The new method also makes
use of refactoring approach to improve the software system
performance. Different programming languages have different
program structures and syntax, so the new approach works
with these through the use of fact and rule processing, forming
a link between the software module and the detection network
in order to provide superior detection of design flaws. This
technique is capable of working with C#, Java, and software
systems involving refactoring in order to identify a range of
design flaws.

A. Research Methodology

Figure 1 presents the workflow used in design flaw de-
tection. This step-by-step process presents the inputs from
the software system and is able to distinguish the modules
from the larger systems. The input data makes use of the
fact and rule programming which form a bridge connecting
the software modules and the design flaw processing system
using the metric. In the process described, step 4 allows the
analysis of the source code flaws, which can be verified at the
next stage. The verified data then serve as the output for the
user seeking to detect the design flaws. Refactoring is then
suggested to resolve design flaws and improve the software
system performance. Limits are introduced in testing so as to
evaluate the performance of the novel method in comparison
to current approaches in order to encourage superior perfor-
mance. The steps used are explained as follows:

o Step 1: Source code modules are input to detect the design
flaws. First of all, the source code modules are selected
(Java, C#, or other types of object-oriented software) to
detect the flaws in the software system.

e Step 2: Source code modules are verified and divided
into attributes, classes, and methods with the relation-
ships classified on the basis of an abstract syntax tree
of determined fact and rules. The required metrics are
also calculated in the form of LOC (line-of-code), used
variables.

o Step 3: In the stage the facts and rules of metrics are
applied for the modules. The divided fraction of the
source code is used in determining the facts and rules
required to carry out the detection of design flaws.

e Step 4: The source code is measured and analyzed with
regard to the specified software metrics. The metrics used
in detecting the design flaws are formulated on the basis
of the determined facts and rules. This stage is where
comparisons are made between the detection metrics and
the determined primary threshold values.

. Apply proper
Verify source Pply prop
Input source facts and
. code .
code > rules of
modules ;
modules metrics for
modules

4 5 6
Measure and Optimize
analysis performance
source code enhancement Show results
»| on the behalf » of detection » and proper
of given with variables
software optimization
metrics algorithm

Fig. 1: Processes of the proposed research work

e Step 5: The optimization algorithm is used for perfor-
mance enhancement. In this case, the artificial bee colony
algorithm is employed. Details of this algorithm are
shown in Algorithm 1. This stage generates the final
threshold values.

o Step 6: The results and variables are presented at this
stage after the detection stage is complete. The system
performance can be analyzed and the results presented to
the end user.

IV. RESULTS AND DISCUSSION

Datasets of software design flaws were collected from
previous research to conduct experiments. Online data entry
software was also used to test the applicability of the proposed
methodology. Table I lists the three datasets used.

The performance of detection approaches for two-class
(i.e. fault-prone and nonfault-prone) problems was commonly
evaluated using the pattern set in the confusion matrix, shown
in Table II.

In Table II, f;; expresses that the number of actual class =i
is classified into class = j, where i, j € 0, 1. Detection accuracy,
a commonly used detection performance measure, was used to
quantitatively evaluate the detection approaches. This measure
was derived from the confusion matrix as follows:

foo+ /11
foo+ for + fio+ fu

The detection accuracy rates for the three systems were
90%, 92%, and 93.5% according to Figure 2, in order of
the dataset numbers for the technique in which Large Class
flaws were detected. In Figure 3, the results for accuracy of
detection were 92.5%, 90%, and 90% order of the dataset
numbers for the technique in which Lazy Class flaws were
detected. In order to make comparisons with other common
methods, the results of this experiments were assessed against
findings obtained using the standard metric-based technique.
The results are indicated in Figures 2 and 3.

D

V. CONCLUSION AND RECOMMENDATIONS

This study put forward a novel approach to improve de-
sign flaw detection using metrics. The technique involved an
artificial bee colony algorithm which was used to assist in
selecting appropriate metrics to support the process of flaw
detection. The study also proposed the evaluation function

Require: Initialization: Read problem data, parameter values
(B and NC), and stopping criterion.
repeat
(1) Assign a(n) to empty solution to each bee.
@)
for i =0toi < NC do
do forward pass
(a)
forb=0tob< Band s=0tos < f(NC) do
(i) Evaluate possible moves
(ii)) Choose one move using the roulette wheel
b+ + and s+ +
end for
do backward pass
(b)
forb=0tob< B do
Evaluate the (partial/complete) solution of bee b
b+ +
end for
(©)
forb=0tob< B do
Loyalty decision for bee b
b+ +
end for
(d)
forb=0to b< B do
if b is uncommitted then
choose a recruiter by the roulette wheel
end if
b+ +
end for
1+ +
end for
(3) Evaluate all solutions and find the best one.
Update zpest and f(2pest)
until Stopping criterion is not satisfied
return (xbesh f(xbest))

Algorithm 1: Proposed artificial bee colony algorithm

TABLE I: Experimental datasets

Number Datasets

1 CommonCLI v1.0

2 JUNIT v1.3.6

3 GANTTPROJECT v1.10.2

TABLE II: The confusion matrix

Predicted class

Class =0 Class =1
Class = 0 foo fo1
Actual class Class = 1 1o n
100
97.5 |- 1
>
g
5 9f 8
g
=
£ 925 8
3
3
— 90 |- N
S)
IS
87.5 |'|—e— Proposed methodology .
—e— Metrics-based methodology

I I]
85 1 2 3

#no. datasets

Fig. 2: The detection accuracy of the proposed approach and
the metric-based approach on Large Class flaw detection

100

97.5 |- N
>
=
5 95| :
g
=
2 9251 .
3
3
— 90 - N
o
S8

87.5 '|—8— Proposed methodology N

—e— Metrics-based methodology

I I]
85 1 2 3

#no. datasets

Fig. 3: The detection accuracy of the proposed approach and
the metric-based approach on Lazy Class flaw detection

used to calculate the contribution threshold for each of the
metrics in accordance with the requirements of the software
data input. The experimental results showed that the proposed
model established more suitable thresholds for metric-based
design flaw detection.

It may be possible in future studies to examine the potential
of other algorithms to be used for optimization to improve the
detection accuracy. Genetic algorithms may be suitable for
this purpose. Furthermore, it may also be possible to improve
the algorithm performance through increasing the search for
software design flaws since many other parameters can be
applied in the process of design flaw detection.

ACKNOWLEDGMENT

This research was supported in part by the School of
Information and Communication Technology, University of
Phayao, Thailand.

REFERENCES

[1] T. Tourwe and T. Mens, “Identifying refactoring opportunities using
logic meta programming,” in Seventh European Conference onSoftware
Maintenance and Reengineering, 2003. Proceedings., March 2003, pp.
91-100.

[2] A. Chatzigeorgiou and A. Manakos, “Investigating the evolution of bad
smells in object-oriented code,” in 2010 Seventh International Confer-
ence on the Quality of Information and Communications Technology,
Sept 2010, pp. 106-115.

[3] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring:
Improving the Design of Existing Code. Addison-Wesley Professional,
June 1999.

[4] D. A. Wheeler, B. Brykczynski, and R. N. Meeson, Jr., Eds., Software
Inspection: An Industry Best Practice for Defect Detection and Removal,
Ist ed. Los Alamitos, CA, USA: IEEE Computer Society Press, 1996.

[5] S. Mekruksavanich and P. Muenchaisri, “Using declarative meta pro-
gramming for design flaws detection in object-oriented software,” in
2009 International Conference on Signal Processing Systems, May 2009,
pp. 502-507.

[6] S. Mekruksavanich, “Identifying behavioral design flaws in evolving
object-oriented software using an ontology-based approach,” in 2017
13th International Conference on Signal-Image Technology Internet-
Based Systems (SITIS), Dec 2017, pp. 424-429.

[7] N. Moha, Y.-G. Gueheneuc, L. Duchien, and A.-F. Le Meur, “Decor: A
method for the specification and detection of code and design smells,”
IEEE Trans. Softw. Eng., vol. 36, pp. 20-36, Jan. 2010.

[8] M. Fokaefs, N. Tsantalis, and A. Chatzigeorgiou, “Jdeodorant: Iden-
tification and removal of feature envy bad smells,” in 2007 [EEE
International Conference on Software Maintenance, Oct 2007, pp. 519—
520.

[9]1 E. Bonabeau, M. Dorigo, and G. Theraulaz, From Natural to Artificial
Swarm Intelligence. New York, NY, USA: Oxford University Press,
Inc., 1999.

[10] J. Kennedy, R. C. Eberhart, and Y. Shi, “chapter one - models and
concepts of life and intelligence,” in Swarm Intelligence, ser. The
Morgan Kaufmann Series in Artificial Intelligence, J. Kennedy, R. C.
Eberhart, and Y. Shi, Eds. San Francisco: Morgan Kaufmann, 2001,
pp. 3 — 34.

[11] G. Beni and J. Wang, “Swarm intelligence in cellular robotic systems,”
in Robots and Biological Systems: Towards a New Bionics?, P. Dario,
G. Sandini, and P. Aebischer, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1993, pp. 703-712.

[12] T. D. Seeley, S. Camazine, and J. Sneyd, “Collective decision-making
in honey bees: how colonies choose among nectar sources,” Behavioral
Ecology and Sociobiology, vol. 28, no. 4, pp. 277-290, Apr 1991.

[13] D. Teodorovi¢, Bee Colony Optimization (BCO). Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 39-60.

