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Abstract—In this paper, we propose four unsupervised position
estimation strategies from very noisy observations. Moreover, we
discuss their performance, applying them to data gathered under
a sensor system constructed with common devices. An observed
RSSI, which denotes radio wave intensity, is distorted by noises
because of multipath fading and obstacles to prevent radio wave
communication and nobody knows correct RSSI. Hence, a posi-
tion estimation strategy should be an unsupervised method and
we must introduce some assumptions to an observation generation
process. The position estimation strategies have the following
assumptions; (1)receivers with too low RSSI are not reliable
and (2)human move is enough slow. Using the assumption, we
proposed four position estimation strategies with an unsupervised
method. We gathered RSSI logs in an international academic
conference to discuss the performance of the four strategies.
Moreover, we applied the strategies to the logs and estimated
positions are discussed from the viewpoint of stability of estimated
positions.

Keywords—Indoor detection, human moves, proximity-based
detection

I. INTRODUCTION

Indoor positioning estimation[1] is a basic technology
to understand human moves in a real environment. GPS-
based system[2] is used outside but for indoor positioning
estimation, other technologies are needed to detect human
position because GPS signal does not reach inside a building
generally. For indoor positioning estimation, Wi-Fi, Bluetooth
or Radio Frequency Identification (RFID)[3] technology is
used to detect a human position. The structure inside a building
is more complicated than outside a building because there
are many walls and many persons coming and going inside a
building. The walls and the persons are obstacles to interrupt
communications between equipments. Hence, indoor position
estimation needs different estimation algorithm.

Indoor positioning estimation technologies are basically
four approaches; proximity[4], lateration[5], angulation[6], [7],
[8], and fingerprinting[9], [10]. In this paper, we employ
proximity to estimate a human position.

Proximity regards a human position as a location of a
device (a receiver) you set previously. Hence, it is impossible
to estimate a correct human position and a detected position
is approximate. Theoretically, radio wave intensity is propor-
tional to a distance between a transmitter and a receiver. The
nearest receiver is selected as a human position according to
radio wave intensity in proximity.

It is difficult to estimate a human position with indoor
positioning estimation in a real environment because radio

wave intensity does not match a theoretical model. Multipath
fading and obstacles change theoretical intensity and the
intensity is not proportional to a distance directly. Hence, it
is not favorable to select the nearest receiver based on the
observed radio wave intensity. A approach to reduces the noise
is an alignment of radio wave sensitivity according to sensor
characteristics and building design. The alignment needs some
pairs of radio wave intensity and correct position gathering
data in a controlled environment. In this paper, we do not use
such the alignment and have to estimate a human position with
observations including many noises.

We introduce two assumptions into a position estimation al-
gorithm to estimate a correct position regardless of the noises.
The assumptions are (1) receivers with too low RSSI are not
reliable and (2) human moves are slow. Using assumption (1),
we neglect some receivers with low RSSI. Using assumption
(2), we neglect some receivers changing rapidly. Hence, we
propose four position estimation strategies and compare them
each other.

“Position estimation strategy 1” selects a receiver with the
biggest RSSI strength as the nearest receiver simply. This
strategy is a simple implementation of proximity.

“Position estimation strategy 2” selects a receiver with the
biggest RSSI strength and over -90 RSSI scores as the nearest
receiver. A small RSSI score denotes a large distance between
a transmitter and a receiver or existing some obstacles between
a transmitter and a receiver. However, we cannot separate a
reason why a receiver measures a low RSSI score because there
is less information on an observation environment. Hence, in
this strategy, we neglect a receiver with a small RSSI score
and use only reliable receivers.

“Position estimation strategy 3” determine the nearest
receiver which appears during some intervals the most fre-
quently. An observed RSSI score includes much noise and
it is difficult to remove the noise from observations. Hence,
we employ an assumption that human moves do not change
rapidly and in the nearest receiver selection, A receiver is se-
lected, which is near the preceding receivers and the following
receivers

“Position estimation strategy 4” is improved “Position
estimation strategy 3” adding a restriction which denotes we
use receivers with over -90 RSSI score. We can determine the
nearest receiver using only reliable receivers.

Comparing them and discussing the performances from the
viewpoint of computational cost and estimation characteristics,
we employ “Position estimation strategy 4”.



This paper is constructed below. In Section 2 related works
are introduced, which are indoor positioning systems with
wireless sensors. In Section 3 we introduced our sensoring
system and explain four position estimation strategies. In
Section 4 some experiments are executed with Low Energy
Bluetooth (BLE) based indoor positioning data of academic
conference participants. We compare the strategies and explain
why we select “Position estimation strategy 4”. In Section 5
we describe conclusions and future works.

II. RELATED WORKS

An indoor positioning system is classified into four ap-
proaches: proximity, lateration, angulation, fingerprinting.

In proximity, we assume that we know where a receiver,
which is an access point of Wi-Fi, Bluetooth, and RFID, is lo-
cated. On the other hand, we do not know where a transmitter,
which is a beacon with a person, is located. We estimate the
nearest receiver based on radio wave intensity, for example,
RSSI (Received Signal Strength Indication). Proximity is a
very simple approach but has some drawbacks. RSSI-based
proximity is difficult to find a line of sight path between a
transmitter and a receiver because there are many obstacles
in the environment. Moreover, because radio propagation in
indoor environment suffers from multipath fading, it is very
difficult to estimate a correct RSSI.

Lateration, which is called triangulation, estimates a lo-
cation based on distances between receivers and transmitters.
Distance is calculated with propagation time from a transmitter
to a receiver and RSSI decay from a transmitter, which is
proportional to the distance. If we know three and more
distances between receivers and a transmitter, we can estimate
location[5]. Generally, it is so sensitive to distance estimation
and suffers from obstacles in a real environment.

Angulation is an algorithm to estimate location based
on angles between a receiver and transmitters. Angulation
needs information on two angles to derive the 2D location[6],
[7], [8]. However, because usual receivers, which are Wi-Fi
routers, does not have a directivity of radio wave, we have to
prepare special devices to use angulation. Hence, it is difficult
to construct an indoor positioning system with commodity
electric devices.

Fingerprinting is employed in the environment where you
do not know where transmitters which do not move. Moreover,
it can be applied to an environment where multipath fading
happens and other persons prevent radio wave communication.
In fingerprinting, you have to measure RSSI at some points
previously and you construct an RSSI strength map, which is
called a fingerprint. When you estimate a human position, you
predict a position with the fingerprint. In fingerprinting, various
machine learning methods are used, which are probabilistic
methods, k-nearest neighbor, neural networks, support vector
machines, smallest M-vertex polygon. [9] and [10] use support
vector machines to estimate location. Fingerprinting assumes
that there is a similar situation in both in constructing a
fingerprint and in predicting a human position. When an
environment changes dynamically, you can prepare some fin-
gerprints previously and change the fingerprints according to
an estimation environment.

TABLE I. DEVICES EMPLOYED IN EXPERIMENTS

Devices Chipsets Functions
Beacons CC2650STK The device is attached with a person and emits

advertisement packets. It includes some other
sensors; Accelerometers, Gyroscope, Ambient
temperature, and so on.

Scanners mbed TY51822r3 The deice receives packets from wireless tags
and send information; RSSIs to a database
server.

Server

Scanner 1

Scanner 2

Scanner 3

Beacon

Internet

Bluetooth

Fig. 1. Sensoring system for international conference participant behavior
analysis

III. INDOOR POSITION ESTIMATION BASED ON BLE
BEACONS RSSI

We construct a sensoring system to gather BLE beacons
RSSI and propose position estimation algorithms. We describe
methodologies to detect indoor position using BLE beacon
RSSIs.

A. Human behavior sensoring system

We explain a human behavior sensoring system to estimate
indoor human position with common electric devices. We
assume the sensoring system works inside a building and
during some days and the system is designed.

We use two devices, a beacon and a scanner, to measure
human behaviors. The beacons are attached with persons and
emit advertisement packets at regular intervals. Because they
are moves with a person, it is difficult to supply electrical
power to them constantly. We have to make a beacon that
executes with a small battery and consume less electrical
power. The scanners receive the advertisement packets from
beacons and are able to measure RSSI. We can set many
scanners inside a building and they do not move at all. Hence,
it is not important to make a scanner be small and be less
power consumption because we can supply them with electric
power from outlets or a big battery.

In Table I, we explain beacons and scanners. BLE technol-
ogy is employed to construct beacons and beacons continue to
run during a few years with a coin cell battery. A beacon emits
advertisement packets with Bluetooth technology. Scanners are
constructed with mbed, which is a kind of onboard computer,
to receive the advertisement packets via Bluetooth.

Scanners send information on advertise packets to a server
via the Internet. In the server the information is stored as log
files and the logs are analyzed to estimate human behavior.
Figure 1 shows our sensoring system.

A Beacon emits an advertising packet every 10 seconds
with the same strength. On the other hand, some scanners
receive the packet every 10 seconds and store RSSI of the
packet. Hence, we obtain logs including beacon ID, scanner



ID, and RSSI and estimate human behavior form the log data.
In this paper, we would like to determine indoor position
based on RSSI because a distance between a beacon and
a scanner makes RSSI be weak theoretically. However, it
is difficult to determine a correct position in a real world
although we combine many measurements. Hence, we regard
the nearest scanner as an estimated position of a person with a
beacon. This approach is called“proximity”. Because RSSI is
proportional to the distance between a beacon and a scanner
theoretically, we can a scanner with the largest RSSI as the
nearest scanner.

B. The strongest RSSI Based Estimation

We select a scanner with the maximum RSSI as the nearest
scanner from a person and regard the scanner position as user’
s position. This approach based on a very simple criterion and
is called “Position Estimation Strategy 1”.

argmax
x

RSSI(t, x) (x ∈ ID) (1)

where ID denotes a set of scanners and RSSI(x) denotes RSSI
strength of a scanner x at t.

The idea does not consider dynamic environment changes.
RSSI is proportional to a distance between a beacon and a
scanner without any obstacles theoretically. However, there are
many other persons in an experimental situation and they are
regarded as obstacles making RSSI be weak. Moreover, when
we measure RSSI in a room, reflected radio wave disturbs
RSSI. Hence, the idea is too naive to choose a correct scanner
in many cases.

C. The strongest RSSI based Estimation Considering Thresh-
old

We select a scanner with the maximum RSSI that achieves
over -90 and regard the scanner position as user ’s position.
This approach is an approach modifying “Position Estimation
Strategy 1” and is called “Position Estimation Strategy 2”.

argmax
x

RSSI(t, x) (x ∈ {y|y ∈ ID,RSSI(t, y) > z})
(2)

where z denotes a threshold which controls reliability of a
scanner.

RSSI is proportional to a distance between a beacon and
a scanner theoretically but in a real environment, we have
to consider obstacles, which are other persons and building
facilities. Moreover, because multipath fading makes RSSI
increase or decrease, we do not measure RSSI under the theo-
retical condition. Hence, RSSI is not enough clue to estimate
person position. Moreover, when there is no scad scanner
with over -90 RSSI, this strategy generates some missing
values. Selected scanners are very reliable but a prediction
is incomplete because of a lack of position estimation.

We can assume that a person does not move too fast
and selected scanners do not change during a small interval
dynamically. We can predict a better scanner to approximate
the person with the assumption than with RSSI. Speaking
concretely, we obtain a sequence estimated based on scanners
with the maximum RSSI at first. Next, we determine a scanner
based on scanners that appear during a predefined interval (we
call an observational window.). Using this strategy, we can
reduce changes in scanners within a small interval.

TABLE II. EXAMPLES OF SCANNER LOGS

No. Timestamp Scanner ID Beacon ID RSSI
1 ”2017-07-09 14:42:50” “ scanner 1” ”beacon 1” -110
3 ”2017-07-09 14:42:51” “ scanner 2” “ beacon 1” -101
4 ”2017-07-09 14:42:51” “ scanner 3” “ beacon 1” -92
5 ”2017-07-09 14:42:51” “ scanner 4” “ beacon 1” -83

19 ”2017-07-09 14:42:52” “ scanner 5” “ beacon 1” -100
82 ”2017-07-09 14:42:53” “ scanner 6” ”beacon 1” -99
90 ”2017-07-09 14:42:53” “ scanner 7” “ beacon 1” -93

D. Voting Based Estimation with observational window

Based on the previous assumption, we determine a scanner
that is near by a person. We choose a scanner that is observed
the most frequently during some intervals. At each time a
scanner is selected, which measures the strongest RSSI from
person’s beacon. This approach is called “Position Estimation
Strategy 3”. It avoids missing values and rapid change of the
strongest RSSI scanners.

argmax
x

RSSI(t, x) (x ∈ ID, t ∈ [t− w, t+ w]) (3)

where w denotes a window size.

This approach does not consider the reliability of esti-
mation because we employ all scanners regardless of RSSI
strength. For more improvement, we can consider the reli-
ability of estimation like “Position Estimation Strategy 2”.
Speaking concretely, we select a scanner that appears most
frequently within a window and is over an RSSI strength.
This approach combines Position Estimation Strategy 2 with
a majority rule within an observational window and solves
missing values and rapid changes of selected scanners.

E. Voting based estimation considering threshold

We combine “Position Estimation Strategy 3” with the
reliability of estimation based on RSSI strength and solve
missing values and violent transition of the strongest scanners.
We call this approach “Position Estimation Strategy 4”.

argmax
x

RSSI(t, x) (x ∈ {y|y ∈ ID,RSSI(t, y) > z}, (4)

t ∈ [t− w, t+ w])

Measurement of RSSI depends on observation environment
strongly. Hence, we use only two simple assumptions: (a)
the nearest scanner measures the strongest RSSI strength, and
(b) a sequence of scanners with the strongest RSSI changes
smoothly because a person does not move rapidly. Of course,
we can introduce more assumptions but such assumptions need
a strong restriction of the observation environment. In this
paper, we do not need strong assumptions for person movement
and observation environment.

IV. EXPERIMENTS

A. Datasets

We use dataset, which is gathered in an international
academic conference, to evaluate the proposed strategies. The
dataset consists of logs during three days, which includes a
timestamp, beacon ID, scanner ID, RSSI, and so on. In Table
II we show an example of logs obtained by our experiment.
We gathered the logs from almost all participants in the
international conference and beacons information was stored
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Fig. 2. Scanner location in a conference venue

in the logs simultaneously. In Table II, some logs, which
denote one participant; “beacon 1” at a time, are picked up.
The RSSI scores in Table II are measured in each scanner
and is proportional to a distance between a beacon and the
scanner theoretically. The sensoring system is constructed with
common electric devices and a beacon and a scanner have
unique characteristics. If we can use some data including
correct positions and RSSI strength, we can revise the device
characteristics with the data. However, in this experiments, we
do not know any correct participants positions and we cannot
execute alignments of devices.

A beacon sends an advertising packet every 10 seconds and
scanners receiving the packet record RSSI scores. The RSSI
scores are sent from a scanner to a log server via the Internet.
Because the server has to process much information which
arrives there simultaneously and at some times a transfer rate
of the Internet is very low, some delays happen. In estimating
a participant position, we neglect a small delay and logs within
some durations are regarded as a packet that is sent from the
same position.

The conference uses two floors in a conference venue
center and scanners are allocated in two floors. Figure 2 shows
where scanners are on the 4th floor and the 5th floor. In this
experiments, scanners are distributed in a place uniformly but
we have to discuss more appropriate allocation of scanners.
This is one of the future works.

In this experiments 320 participants have beacons are their
behavior are observed via the beacons for 4 days. We choose
only logs within a poster session and we estimate participant
indoor position with the logs. In this experiments, we do
not record the correct participant position and it is impos-
sible to evaluate our proposed method from the viewpoint
of estimation accuracy. Moreover, it is impossible to adjust
position estimation algorithms using observations. We need to
make ground truth data and evaluate the proposed strategies
from the viewpoint of estimation error but it is one of the
future works. Estimated positions from logs do not match the
correct participant position perfectly but we can understand the
abstract of participant behaviors. Based on the assumption we
discussed participant similarity based on their behavior[11].
In this case, we regarded the estimated position as data with
missing values and much noise.

Scanner ID

Time

Fig. 3. Position Estimation Strategy 1: A BLE beacon exits in the scanner
receiving the strongest RSSI

Scanner ID

Time

Fig. 4. Position Estimation Strategy 2: A BLE beacon exits in the scanner
receiving the strongest RSSI and RSSI is over -90

B. Results

We estimate an indoor position of conference participants
with the previous position estimation strategies. Especially, we
discuss how much noise the algorithms can reduce under our
assumptions.

Figure 3 shows scanners selected with position estimation
strategy 1 during an hour. In position estimation strategy 1,
all log data is used to choose the nearest scanner and we can
estimate the most positions of participants. However, many
conference participants move freely and are regarded as ob-
stacles in sending advertise packets. Hence, selected scanners
are changed rapidly and the result is not appropriate to estimate
participants’positions. At some times scanners with over 30 ID
appear suddenly and should be regarded as wrong estimations
because the change denotes rapid movements from the 4th
floor to the 5th floor. Because an advertising packet can reach
at scanners through wall and floor, scanners on a different floor
receive the packets. Except such detections almost all position
estimations denote participant stay around “Registration &
Foyer”. The poster session holds at “Registration & Foyer” and
we think the estimation is appropriate. A simple proximity-
based algorithm is very sensitive to noises and estimated
positions are not stable. We introduce some assumption into a
position estimation algorithm.

Figure 4 shows scanners selected with position estimation
strategy 2 during an hour. In the strategy, we neglect scanners
with less than -90 RSSI because such the scanners are not
reliable. ”Position estimation strategy 1” determines the nearest
scanner regardless of its RSSI strength. When many partici-
pants exist in a room, the participants are obstacles to prevent
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Fig. 5. Position Estimation Strategy 3: A BLE beacon exits in the scanner
selected from the maximum RSSI scanners during 40 seconds
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Fig. 6. Position Estimation Strategy 4: A BLE beacon exit in the scanner
that selected from the maximum RSSI scanners during 40 seconds and RSSI
is over -90

radio wave from beacons. In this case, a far scanner obtains
the strongest RSSI and it is selected as the nearest scanner. In
Figure 4 some scanners with over 30 ID are deleted because
wall and floor make RSSI be weak. Moreover, many position
estimates are deleted because participants stay at “Registration
& Foyer” but each participant is acted as an obstacle to make
RSSI be weak. We think estimation is more reliable but the
estimation result includes many missing values. When you
develop an application based on the estimation, you have
to consider missing values more carefully. Totally, ”position
estimation strategy 2” can estimate a more correct position
than ”position estimation strategy 1”.

Figure 5 and Figure 6 show results of position estimation
strategy 3 and position estimation strategy 4 respectively. The
strategies assume that participants do not move rapidly and the
next position is near the previous position. Hence, the strategies
regard estimations that are different from neighbor estimations
as noises and estimates more neighbor positions. In a voting
algorithm, we can estimate participant’s position as a scanner
which frequently appears within some evaluation duration. We
can determine positions when there is no candidate scanner
because of low RSSI and advertise packet loss. In this case, we
employ a voting algorithm to neglect delays within 20 seconds.
We select scanners that appears the most frequently for 40
seconds, which include the preceding data within 20 seconds
and the following data within 20 seconds.

Comparing Figure 5 with Figure 6, the result is very similar
regardless of a threshold. Smooth movement assumption can
reduce noises and complement missing values. On the other
hand, comparing Figure 4 with Figure 5, in Figure 5 many

sensors which are far from “Registration & Foyer” are deleted.
It means that position estimation strategy 3 and position
estimation strategy 4 tends to estimate near “Registration &
Foyer” because the strategies consider the participant stays
there.

From these results, we think position estimation strategy 4
is superior to other strategies from the viewpoint of compu-
tational cost and estimation precision. In position estimation
strategy 4 we can decrease log data to analyze using a
threshold. Moreover, a voting algorithm can complement miss-
ing values appropriately. Hence, we think position estimation
strategy 4 utilize log data including many noises efficiently.

V. CONCLUSIONS

In this paper, we develop an indoor position system with
commodity electric devices and gather information on beacon
devices at an international academic conference. We proposed
4 position estimation strategies to estimate the nearest scanner
based on RSSI from the gathered data. The RSSI strength is
proportional to a distance between a beacon and a scanner
theoretically but in a real environment, many obstacles and
multipath fading make an RSSI change regardless of the
distance. Hence, we estimate position by only reliable scanners
with over -90 RSSI score and complement missing observation
with a voting algorithm.

Many tasks remain as future works. In this experiment, we
set scanners in a conference venue as they distribute uniformly.
Hence, we did not determine a distribution of scanners based
on sensors’ sensitivity. To measure more correct RSSI we
have to discuss a scanner setting strategy considering sensor
characteristics and venue design. Moreover, in this experiment,
we were not able to know where a participant is correct. Hence,
we can not discuss the performance of a position estimation
strategy from the viewpoint of estimation error. Discussing the
performance more strictly, we have to gather ground truth data.
Finally, because there are many noises in a sensoring system
with commodity electric devices, we have to develop a new
analysis method which is robust for noises and missing values.
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