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Abstract—The dissolved oxygen (DO) measurement plays a
crucial role in every automatic aerator-control system for shrimp
farming because the DO affects both the animal survival rate and
the growth rate. As a consequence, the accuracy degree of the DO
sensor matters. The sensor with high accuracy is not economical.
Therefore, we propose a framework for accuracy improvement
in the DO measurement of the low-cost sensor. The proposed
framework is based on the Kalman filtering algorithm in which
an autoregressive technique is used to model the state transition.
Therefore, it does not require a complex DO dynamic model.
Experimental results show that the framework can be used to
improve measurement accuracy in most cases. In the best case,
our proposed method increases the accuracy by 13.5%. However,
the degree of improvement is on a small scale.

Index Terms—Kalman filtering algorithm, autoregressive
model, dissolved oxygen measurement, shrimp farming

I. INTRODUCTION

Recently, the intensive aqua-farming has been of interest
not only because the world population has been increasing
but also because the aquaculture is one of the fastest growing
food sectors worldwide [1], [2]. Embedded systems and
the information and communication technology (ICT) have
been applied for automatic farm-control systems for more
than three decades [3]. The fundamental principle underlying
automatic control systems for aquaculture is straightforward.
Summarily, some crucial parameters are monitored, and, based
on the parameter values, the system sends commands to some
actuators to control environmental conditions for sustaining
animal life [3]–[7].

Many water-quality parameters affect the survival rate and
the growth rate of domesticated shrimps, such as the dissolved
oxygen (DO), temperature, and pH. Among them, the DO
content is one of the most critical factors [8], [9].

Recently, our research group, the Embedded System
Technology (EST) laboratory of the National Electronics and
Computer Technology Center (NECTEC), proposed a flexible
and automatic aerator-control system for shrimp farming in
Thailand [7], and one of the crucial parts of the system is the
DO sensor. Thus, optical DO sensors with high accuracy were
used. Besides, a team of this research group has developed

Fig. 1. EST DO sensor and optical DO sensor.

the electrochemical-based DO sensor, as shown in Fig. 1. The
mechanism of this sensor is based on a well-known concept
of the oxygen-reduction action. In this paper, we hereafter call
this sensor the EST sensor after the name of the EST Lab.

As a matter of fact, different technologies utilized in sensor
development result in different degrees of accuracy. The EST
sensor is economical but less accurate, compared with the
optical one. Motived by the fact that we can consider less-
accurate data as a noisy signal and that we can extract the
signal of interest from a noisy signal by Kalman filtering,
we aim to improve the measurement accuracy of the low-
cost EST sensor by applying the Kalman filtering together
with an autoregressive model. Although there are some related
research publications [10], [11], to the best of our knowledge,
the Kalman filtering with the autoregressive model has yet to
apply for improving the accuracy of the DO measurement in
automatic aerator-control systems for shrimp farming.

The rest of this paper is organized as follows. Section
II briefly reviews the stand Kalman filtering algorithm and
the autoregressive model and describes the framework to
be developed in our experiments. Section III details the
experiments and results. Section IV discusses the efficiency
of the proposed estimator. The last one, Section V, concludes
this work.



II. PROPOSED FRAMEWORK

This work aims to minimize the difference between DO
levels read from EST sensor and those from the optical one.
In order to achieve the aim, we adopt the Kalman filtering
algorithm together with an autoregressive technique, which is
used to model the state transition of the DO concentration
in shrimp ponds. The following subsections briefly review
the background information about the Kalman filtering and
the autoregressive model, and the last subsection sketches the
proposed framework used in our simulations.

A. Kalman Filtering

The Kalman filtering algorithm can be used to estimate the
state of a linear system with random behavior [12]–[14]. It
assumes that the linear system is described by a state equation
together with a measurement equation. The state equation and
the measurement equation are formulated by the following
equations, respectively.

xk = Fk−1xk−1 +Gk−1uk−1 +wk−1, (1)

yk = Hkxk + vk, (2)

where xk is the state vector at time k, F is the state-transition
matrix, u is the control input vector, G is the control input
matrix, w is the process noise vector, yk is the vector of
measured outputs, H is the observation matrix, and vk is the
measurement white-noise vector. Note that the matrix F is a
square matrix, and it applies the effect of each state parameter
at time k−1 on the state parameter at time k. The matrix
G applies the effect of each control input parameter on the
state. The matrix H describes the relationship between the
state vector xk and the measurement vector yk.

The Kalman filtering algorithm consists of two stages:
prediction and measurement update. The prediction stage
consists of two steps: state vector prediction and state error
covariance prediction. In the first step, given an initial state
estimate x̂0 and an initial state error covariance matrix P0,
the predicted state vector x̂k|k−1 (called a priori predicted state
vector) is predicted from the state dynamic equation

x̂k|k−1 = Fk−1x̂k−1 +Gk−1uk−1, (3)

where x̂k−1 is the previous estimated state vector.
In the second step, the state error covariance matrix Pk|k−1

is predicted by

Pk|k−1 = Fk−1Pk−1F
T
k−1 +Qk−1, (4)

where Qk−1 is the covariance matrix of process noise at time
k−1, and Pk−1 is the state error covariance of the state vector
xk−1, which is defined as

Pk−1 = E
[
(xk−1 − E [xk−1])(x

T
k−1 − E

[
xT
k−1
]
)
]
. (5)

Note that the symbol E[·] denotes the expectation of state
vectors, and the superscript T denotes the matrix transposition.

The measurement update stage consists of three steps:
Kalman gain determination, state vector update, and state error

covariance update. In the first step, the Kalman gain matrix
Kk is computed by

Kk = Pk|k−1H
T
k(HkPk|k−1H

T
k +Rk)

−1, (6)

where Rk is the covariance matrix of measurement noise at
time k.

Second, the Kalman gain matrix is used to update the state
vector x̂k by

x̂k = x̂k|k−1 +Kk(yk −Hkx̂k|k−1). (7)

Third, the state error covariance matrix Pk (called a
posteriori error covariance matrix) is updated by

Pk = Pk|k−1 −KkHkPk|k−1. (8)

We can therefore use the Kalman filtering algorithm to
estimate the state vector x̂k for any k when the initial values
of x̂0 and P0 are given.

B. Autoregressive Model

The autoregressive model (AR) can be used to represent
a time-varying process in nature with the assumption that its
output depends on its previous values and a stochastic term
[15]. Let AR(p) denote an AR of order p. Then, according
to AR(p), the variable X at time t, denoted by Xt, is a
function of p previous Xs, i.e., from Xt−p to Xt−1, and can
be formulated by the following equation.

Xt = c+

p∑
i=1

ϕiXt−i + εt, (9)

where c is a constant, ϕi for i=1 to p are the coefficients of
the model, and εt is white noise.

In this work, we use AR(p) to model the state transition in
the prediction stage of the Kalman filtering algorithm.

C. Proposed Framework Based on the Kalman Filtering and
the Autoregressive Model

Based on the Kalman filtering algorithm, our proposed
framework utilizes AR(p) in the prediction stage, and it
follows eight steps as illustrated in Fig. 2. Note that the input
of AR(p) (which is also the input of the prediction stage) and
the output measurement vector (which can be considered as the
input of the measurement update stage) are data obtained from
EST sensors. Experiments and simulation details are provided
in the next section.

III. EXPERIMENTS AND RESULTS

In order to obtain the data used in our simulations,
we set two experiment ponds and nurtured whiteleg
shrimps (Litopenaeus vannamei). The details of experimental
conditions, experiments, and results are provided in the
following subsections.



Fig. 2. Framework of the Kalman filtering (KF) with AR(p) that is used to
model the state transition of the DO content.

A. Experimental Setup and Conditions

We adopted two cylindrical plastic containers and used them
as the experiment ponds, of which their diameters and heights
are 1.2 meters and 0.8 meters, respectively. 120 three-gram
whiteleg shrimps were nurtured for 50 days until their weights
were about 15 grams. The ponds were in an open-air condition,
and some water-quality parameters were controlled as follows.
The salinity was controlled to be 17 parts per thousand, the
pH was in the range of 7.5 to 8.5, the alkalinity was in the
range of 130 to 150 mg/L, and the total ammoniacal nitrogen
was controlled to be less than 1 mg/L.

Both ponds were equipped with a circular pump, which was
used to increase the DO content, and a few DO sensors from
which data were read and recorded every one minute.

Two sets of DO data were used in our simulations; one
was obtained when the ponds had no shrimp (but the pumps
were in operation), and another was obtained when the ponds
housed 120 shrimps. The dates on which these data were read
and data labels are shown in Table I.

In this work, we conducted three experiments, and each
experiment had a set of specific assumptions. Note that, in
all simulations, we set the length of the moving average that
was applied to the data to be 30 and the length of the look-
back window used while performing the EWMA to be 15 in
order to estimate the process covariance matrix Q and the

TABLE I
DATA AND THEIR LABELS USED IN OUR SIMULATIONS. NOTE THAT THE
CODE ‘DATA XXYZ’ SHOULD BE READ ‘THE DATA NO. XX OBTAINED

FROM THE EST SENSOR NO. Y WHEN THE POND HAS NO SHRIMP (Z=N)
OR WHEN THE POND HOUSES 120 SHRIMPS (Z=S).’

Date Label
Sensor 1 Sensor 2

No shrimp

2-4 July 2017 Data 011N Data 012N
7-9 July 2017 Data 021N Data 022N
10-12 July 2017 Data 031N Data 032N
16-17 July 2017 Data 041N Data 042N
21-23 July 2017 Data 051N Data 052N

120 shrimps

11-13 August 2017 Data 061S Data 062S
14-16 August 2017 Data 071S Data 072S
19-21 August 2017 Data 081S Data 082S
23-25 August 2017 Data 091S Data 092S
14-16 September 2017 Data 101S Data 102S

noise covariance matrix R. We did not investigate the effects
of these two parameters in this report.

B. Experiment 1: DO Content Estimation Based on Data
Obtained from One Sensor

In this simulation, we assumed that only data obtained from
one DO sensor were available. Thus, we took those data as the
output measurement vector of the Kalman filtering algorithm.
Also, the state transition was modeled by AR(p), of which its
variable Xt was predicted from its previous p values that were
taken from the same data.

We compared the estimated DO concentration values with
those obtained from the optical sensor, calculated root-mean-
square error (RMSE) values between them, and used those
RMSE values to indicate the efficiency of our Kalman-
filtering-based estimator and, consequently, the accuracy
improvement of the DO measurement. Also, the effect of the
order p of AR(p) on the efficiency was investigated.

Simulation results are shown in Table II and Table III.
It can be seen from the tables that, on average, using the

Kalman filtering can slightly improve the accuracy because
it causes the RMSE drops marginally. Besides, the order p
of AR(p) seems not to affect the efficiency of the Kalman
filtering in this experiment.

C. Experiment 2: DO Content Estimation Based on the
Average of Data Obtained from Two Sensors

In the second simulation, we assumed that there were two
EST sensors and the averaged data from both were used as the
output measurement vector in the Kalman filtering. Similarly,
the state transition was modeled by using AR(p), of which
its variable was predicted based on the same averaged data.
Simulation results are shown in Table IV and Table V.

We found the similar conclusion, i.e., using the Kalman
filtering could slightly improve the accuracy on average, and
the order of AR(p) did not significantly affect the efficiency
of the estimator.



TABLE II
RMSE BETWEEN DO LEVELS OBTAINED FROM THE OPTICAL SENSOR AND THOSE OBTAINED FROM THE EST SENSOR WITH (W) AND WITHOUT (W/O)

THE KALMAN FILTERING (KF) WHEN NO SHRIMP WAS DOMESTICATED IN THE PONDS.

AR(1) AR(2) AR(3) AR(4) AR(5)

w/ KF w/o KF w/ KF w/o KF w/ KF w/o KF w/ KF w/o KF w/ KF w/o KF

Data 011N 0.4863 0.4885 0.4861 0.4885 0.4861 0.4885 0.4864 0.4885 0.4868 0.4885
Data 021N 0.1260 0.1275 0.1274 0.1275 0.1276 0.1275 0.1276 0.1275 0.1279 0.1275
Data 031N 0.1312 0.1332 0.1327 0.1332 0.1337 0.1332 0.1345 0.1332 0.1347 0.1332
Data 041N 0.2135 0.2151 0.2142 0.2151 0.2150 0.2151 0.2154 0.2151 0.2160 0.2151
Data 051N 0.2598 0.2696 0.2597 0.2696 0.2595 0.2696 0.2592 0.2696 0.2589 0.2696
Data 012N 0.3809 0.3823 0.3816 0.3823 0.3819 0.3823 0.3824 0.3823 0.3831 0.3823
Data 022N 0.1192 0.1209 0.1212 0.1209 0.1221 0.1209 0.1223 0.1209 0.1226 0.1209
Data 032N 0.1565 0.1578 0.1581 0.1578 0.1590 0.1578 0.1598 0.1578 0.1591 0.1578
Data 042N 0.2468 0.2479 0.2478 0.2479 0.2487 0.2479 0.2494 0.2479 0.2493 0.2479
Data 052N 0.3783 0.3813 0.3781 0.3813 0.3782 0.3813 0.3782 0.3813 0.3782 0.3813

Average 0.2498 0.2524 0.2507 0.2524 0.2512 0.2524 0.2515 0.2524 0.2517 0.2524
SD 0.1275 0.1278 0.1268 0.1278 0.1265 0.1278 0.1264 0.1278 0.1266 0.1278

TABLE III
RMSE BETWEEN DO LEVELS OBTAINED FROM THE OPTICAL SENSOR AND THOSE OBTAINED FROM THE EST SENSOR WITH (W) AND WITHOUT (W/O)

THE KALMAN FILTERING (KF) WHEN 120 SHRIMPS WERE DOMESTICATED IN THE PONDS.

AR(1) AR(2) AR(3) AR(4) AR(5)

w/ KF w/o KF w/ KF w/o KF w/ KF w/o KF w/ KF w/o KF w/ KF w/o KF

Data 061S 0.7238 0.7232 0.7240 0.7232 0.7243 0.7232 0.7245 0.7232 0.7250 0.7232
Data 071S 0.2238 0.2358 0.2255 0.2358 0.2263 0.2358 0.2276 0.2358 0.2288 0.2358
Data 081S 0.3664 0.3704 0.3703 0.3704 0.3740 0.3704 0.3728 0.3704 0.3736 0.3704
Data 091S 0.1696 0.1916 0.1688 0.1916 0.1678 0.1916 0.1671 0.1916 0.1670 0.1916
Data 101S 1.2740 1.2747 1.2740 1.2747 1.2742 1.2747 1.2746 1.2747 1.2750 1.2747
Data 062S 0.9345 0.9328 0.9364 0.9328 0.9385 0.9328 0.9393 0.9328 0.9411 0.9328
Data 072S 0.3650 0.3668 0.3649 0.3668 0.3655 0.3668 0.3663 0.3668 0.3672 0.3668
Data 082S 0.4023 0.4028 0.4040 0.4028 0.4052 0.4028 0.4061 0.4028 0.4075 0.4028
Data 092S 0.2075 0.2144 0.2077 0.2144 0.2079 0.2144 0.2082 0.2144 0.2086 0.2144
Data 102S 1.2333 1.2362 1.2335 1.2362 1.2339 1.2362 1.2346 1.2362 1.2351 1.2362

Average 0.5900 0.5949 0.5909 0.5949 0.5918 0.5949 0.5921 0.5949 0.5929 0.5949
SD 0.4231 0.4190 0.4229 0.4190 0.4230 0.4190 0.4231 0.4190 0.4232 0.4190

D. Experiment 3: DO Content Estimation Based on Data
Obtained from Two Sensors

We did something differently in the last simulation. We
still assumed that data obtained from two EST sensors were
available, as the previous experiment. However, instead of
using the same vector as the output measurement vector and
the input of AR(p), we used one as the former and another
as the latter. This scheme raised a problem of the choice of
sensor selection to be used in the AR(p). We came around this
problem by deploying a simple strategy, i.e., choosing the data
with a higher average value as the input of the AR(p). It was
because we noticed that, in most instances, the data (which
were available to us) obtained from EST sensors were lower
than those obtained from the optical one. Therefore, selecting
the data with a higher average value as the input of the AR(p)
might bring the estimated values close to those obtained from
the optical sensor.

Simulation results are shown in Table VI and Table VII. It
can be seen that when there was no shrimp in the ponds, using
the Kalman filtering could slightly improve the accuracy on
average. Comparing the results in Table VI with those shown

in Table IV, we found that, when there were two sensors
and when AR(1) was used to model the state transition, we
could get the minimum average RMSE value (0.2264) if we
had adopted the framework used in Experiment 3. However,
using the Kalman filtering caused the average RMSE values
to increase marginally when the ponds housed the shrimps, as
shown in Table VII.

IV. DISCUSSION

All simulation results in this work suggest that the proposed
framework can be used to improve the accuracy of DO
measurement in most cases, especially in the case that there
is more than one sensor available. However, the degree of
improvement is averagely not of significance.

Comparing Table II and Table III, Table IV and Table V,
and Table VI and Table VII, we found that the RMSE values
increased when there were shrimps in the experiment ponds.
A reason might be that, during domesticating the animal,
there are many factors in action, and they affect the DO
concentration. Thus, the effects of these factors should be
investigated and taken into consideration in the DO dynamic
model. Therefore, when there are shrimps in the pond, the



TABLE IV
RMSE BETWEEN DO LEVELS OBTAINED FROM THE OPTICAL SENSOR AND THOSE OBTAINED FROM TWO EST SENSORS WITH (W) AND WITHOUT (W/O)

THE KALMAN FILTERING (KF) WHEN NO SHRIMP WAS DOMESTICATED IN THE PONDS.

AR(1) AR(2) AR(3) AR(4) AR(5)

w/ KF w/o KF w/ KF w/o KF w/ KF w/o KF w/ KF w/o KF w/ KF w/o KF

Data 011N & Data 012N 0.4195 0.4207 0.4196 0.4207 0.4198 0.4207 0.4204 0.4207 0.4210 0.4207
Data 021N & Data 022N 0.1161 0.1160 0.1169 0.1160 0.1177 0.1160 0.1178 0.1160 0.1183 0.1160
Data 031N & Data 032N 0.1337 0.1335 0.1354 0.1335 0.1362 0.1335 0.1366 0.1335 0.1368 0.1335
Data 041N & Data 042N 0.2285 0.2288 0.2293 0.2288 0.2299 0.2288 0.2302 0.2288 0.2307 0.2288
Data 051N & Data 052N 0.3140 0.3165 0.3140 0.3165 0.3139 0.3165 0.3138 0.3165 0.3138 0.3165

Average 0.2423 0.2431 0.2430 0.2431 0.2435 0.2431 0.2438 0.2431 0.2441 0.2431
SD 0.1270 0.1278 0.1264 0.1278 0.1261 0.1278 0.1261 0.1278 0.1262 0.1278

TABLE V
RMSE BETWEEN DO LEVELS OBTAINED FROM THE OPTICAL SENSOR AND THOSE OBTAINED FROM TWO EST SENSORS WITH (W) AND WITHOUT (W/O)

THE KALMAN FILTERING (KF) WHEN 120 SHRIMP WERE DOMESTICATED IN THE PONDS.

AR(1) AR(2) AR(3) AR(4) AR(5)

w/ KF w/o KF w/ KF w/o KF w/ KF w/o KF w/ KF w/o KF w/ KF w/o KF

Data 061S & Data 062S 0.6243 0.6235 0.6258 0.6235 0.6275 0.6235 0.6290 0.6235 0.6311 0.6235
Data 071S & Data 072S 0.2443 0.2469 0.2451 0.2469 0.2456 0.2469 0.2466 0.2469 0.2477 0.2469
Data 081S & Data 082S 0.3666 0.3664 0.3689 0.3664 0.3707 0.3664 0.3705 0.3664 0.3715 0.3664
Data 091S & Data 092S 0.1559 0.1648 0.1559 0.1648 0.1558 0.1648 0.1561 0.1648 0.1564 0.1648
Data 101S & Data 102S 1.2455 1.2467 1.2458 1.2467 1.2463 1.2467 1.2468 1.2467 1.2473 1.2467

Average 0.5273 0.5296 0.5283 0.5296 0.5292 0.5296 0.5298 0.5296 0.5308 0.5296
SD 0.4385 0.4367 0.4384 0.4367 0.4384 0.4367 0.4385 0.4367 0.4385 0.4367

TABLE VI
RMSE BETWEEN DO LEVELS OBTAINED FROM THE OPTICAL SENSOR AND THOSE OBTAINED FROM TWO EST SENSORS WITH (W) AND WITHOUT (W/O)

THE KALMAN FILTERING (KF) WHEN NO SHRIMP WAS DOMESTICATED IN THE PONDS. THE ENTRIES IN THE FIRST COLUMN ARE DATA USED AS THE
INPUT OF AR(p), WHEREAS THOSE IN THE SECOND ARE USED AS THE OUTPUT MEASUREMENT VECTOR.

AR(1) AR(2) AR(3) AR(4) AR(5)

Input of AR(p) Measurement w/ KF w/o KF w/ KF w/o KF w/ KF w/o KF w/ KF w/o KF w/ KF w/o KF

Data 012N Data 011N 0.3938 0.4885 0.4618 0.4885 0.4203 0.4885 0.4257 0.4885 0.4264 0.4885
Data 021N Data 022N 0.1274 0.1209 0.1261 0.1209 0.1278 0.1209 0.1265 0.1209 0.1269 0.1209
Data 031N Data 032N 0.1220 0.1578 0.1427 0.1578 0.1397 0.1578 0.1418 0.1578 0.1432 0.1578
Data 041N Data 042N 0.2201 0.2479 0.2231 0.2479 0.2260 0.2479 0.2283 0.2479 0.2303 0.2479
Data 051N Data 052N 0.2686 0.3813 0.2917 0.3813 0.2897 0.3813 0.2986 0.3813 0.3041 0.3813

Average 0.2264 0.2793 0.2491 0.2793 0.2407 0.2793 0.2442 0.2793 0.2462 0.2793
SD 0.1124 0.1541 0.1362 0.1541 0.1202 0.1541 0.1229 0.1541 0.1234 0.1541

Kalman filtering does not seem to improve the accuracy. On
the other hand, when there is no shrimp in the pond, our
proposed method can improve the accuracy, in the best case,
by approximately 13.5%. The best case is the case in which
data obtained from one DO sensor are used as the input of
AR(p) and those obtained from another are used as the output
measurement vector. The best case is shown in Table VI.

V. CONCLUSION

This paper reported the study on applying the Kalman
filtering and the autoregressive model to improve the accuracy
of DO measurement in the automatic aerator-control system
for shrimp farming. The Kalman filter algorithm was used as a
basis of the proposed framework, in which the autoregressive
model was used to model the state transition. It aimed to

minimize the difference between DO levels read from the
economical but less accurate sensor and those read from
the more accurate one. The simulation results showed that
using the Kalman filtering with the autoregressive model could
improve the accuracy of DO measurement on a small scale.
In the best case, our proposed method increases the accuracy
by 13.5%.
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TABLE VII
RMSE BETWEEN DO LEVELS OBTAINED FROM THE OPTICAL SENSOR AND THOSE OBTAINED FROM TWO EST SENSORS WITH (W) AND WITHOUT (W/O)
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