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Abstract—Vector representation of words plays a major role
in the natural language processing. As a fundamental unit, the
vector representation is further used to solve applied problems:
text classification, textual entailment, named-entity recognition.
In recent times was created several models to produce word em-
bedding vectors which uses different approaches. However, they
suffer from accidents while training, such as random initialization
of weights, the random order of the examples. Therefore, it is
impossible to reproduce the result, and repeated experiments
using the same dataset and algorithms lead to various close
results. In this work, we presented methods for estimating the
”dissimilarity” of the semantic spaces built by the algorithms
of word embeddings and give mathematical intuition about
influence of various randomness on the structure of semantic
spaces.

Index Terms—embeddings, semantic, word2vec, Kullback-
Leibler divergence, diffusion distance

I. INTRODUCTION

Natural language processing is one of the key application
field in artificial intelligence. This processing allows to per-
form a wide range of practical tasks from the classification of
texts to the construction of dialogue systems. In the last few
years, solutions to the problems of natural language processing
based on neural networks to distributed representations of
words have been proposed. However, each of the following
approaches has its own advantages and disadvantages. In
classical models of word processing features used words
encoded by ”one-hot” method, each word in the dictionary
is represented as a vector whose size is equal to the number
of words in the dictionary. All elements of a vector except one
are zero, and an element in the position corresponding to the
word number in the dictionary is one. The proposed approach
has a number of drawbacks as there are very sparse vector
representations. In consequence of which such ideas are not
able to catch the similarities between the words. To improve
the ”one-hot” method we used the distributive hypothesis. The
distributive hypothesis states that words with similar meanings
tend to occur in a similar context. According to this hypothesis,
each word can be represented as a distributed representation,
a vector of real numbers. Such a vector, being an element of

Euclidean space for some dimension Rd, is fed to the input
of models. The assumption of this idea is that the geometric
relations in space Rd will correspond to the semantic relations
between words. For example, the nearest neighbors of a word
in this space will be its synonyms or other words similar
in meaning to the subject. One of the modern methods for
obtaining a distributed representation of words are Word2Vec
models. The idea was proposed by Mikolov and his co-authors
in work[1] with two different neural network architectures: in
the form of a continuous bag of words (CBOW) and in the
form of a skip-gram architecture[2]. The main purpose of these
methods is to store as much information as possible in the
vector of the word while maintaining a smaller dimension.
The CBOW model calculates the conditional probability of
the target word from the context words that surround it in
the fixed window. While, the skip-gram model performs the
reverse operation: predicts the surrounding context words by a
given central target word. Comparing these two architectures,
we can note that the CBOW model is trained faster than the
skip-gram, gives greater accuracy for frequent words, in turn,
the skip-gram model is more suitable for training on small
data, gives greater quality of training for rare words. As the
embedding dimension increases, the prediction accuracy also
increases to saturation at some point, which is chosen as the
optimal embedding dimension. Word2Vec model maximizes
the logarithmic likelihood of occurrence of the context for
the central word and calculates word vectors using stochastic
gradient descent. The functionality of Word2Vec models can
be represented as:

T∑
t=1

log p(wt|Ct), (1)

, where wt - vector of the center word, Ct - set of input vectors.
The main advantage of the distributed representation is its

ability to capture the similarity between words. Measurement
of similarity between vectors is possible, for example, using
cosine distance. But Word2Vec model takes into account only
local distribution, not uses global statistics as frequency.



Alternative method presented by Sotcher[3] uses a statistical
approach. Word embeddings obtained by using singular value
decomposition method from co-occurrence matrix. Key idea
is to approximate the logarithm of the co-occurrence by
multiplying the vectors of words. However, this method is
computationally expensive. Thus, using statistical data, you
can get a vector for each word from the dictionary. The
functionality of the GloVe model:∑

i,j

f(Xi,j)(w
T
i w̃j − logXi,j)

2, (2)

, where Xi,j - co-occurrence matrix, f(x) - the weighting
function, w, w̃ - word vectors.

This algorithm uses global word statistics to construct
a vector representation of words, although it does not use
valuable information about local contexts and distributions.

One more method for obtaining a word embedding vector
is FastText model created by a research team from Facebook
Research[4]. The main difference is that Word2Vec algorithm
builds a vector representation for the word as a whole, whereas
FastText searches for vectors for n-grams that are inside each
word. Consequently, each word is the sum of n-grams vectors.
This approach has a number of advantages like finding the best
vector representation for rare words, and most importantly can
build a vector for a word from its n-grams even if the word
is not in the dictionary, while Word2Vec and GloVe models
cannot do it. But on an intuitive level, this approach has a
drawback, since it builds a vector representation for n-grams,
rather than for statistically significant morphemes that convey
the basic semantic and grammatical properties of the word.

All these models have one more common drawback -
assigning only one vector to each word. This means that if
the word has several different meanings at once, which is
very often the case, the contexts of different meanings will
be averaged, so the existing models of nested words do not
take into account the phenomenon of homonymy, when several
meanings correspond to the same word[5][6].

Randomness in model training leads to a lack of repro-
ducibility, as re-training using the same data sets and model
parameters leads to different ”similar” results[7][8]. Therefore,
it is impossible to match vectors from different trained models.
Moreover, to expand the dictionary, you have to re-train the
model with new examples, which is a resource-intensive pro-
cess. Therefore, methods of stabilization of training models,
today have a high applied importance.

In this paper, for numerical results was used Word2Vec
model.

II. STABILITY

We propose the following definition of stability of semantic
spaces: p(||x|| < r) > pcutoff , where one should understand
as differences between two representation of the same word
in two different word2vec models x = w1,i − w2,i; wk,i is k
model, r is a radius of n-dimensional sphere, which bounds
the word in it; pcutoff is the level of confidence.

III. METRIC AND DIVERGENCE

The Diffusion distance[9] and the Kullbak-Leibler Diver-
gence were chosen as a metric to assess the stability of the
Word2Vec model.

A. Diffusion distance

The Diffusion distance simulates the difference between two
histograms as a temperature field and considers the diffusion
process. Then the integration of a norm on the diffusion field in
time is used as a measure of dissimilarity between histograms.
For the efficiency of calculations, a Gaussian pyramid is used
to discretize the continuous diffusion process. The diffusion
distance is then defined as the sum of the norms over all
the layers of the pyramid. Consider 1-D distributions h1(x)
and h2(x). Instead of calculating d(x) = h1(x) − h2(x),
consider it as isolated temperature field T (x, t) at time t = 0,
T (x, 0) = d(x). The temperature in an isolated field obeys the
heat diffusion equation:

∂T

∂t
=
∂2T

∂x2
(3)

Initial condition T0(X):

T (x, 0) = T0(x) = d(x) (4)

Heat diffusion equation has unique solution:

T (x, t) = T0(x) ∗ φ(x, t) (5)

where φ(x, t) is the Gaussian filter

φ(x, t) =
1

(2π)1/2t
exp(− x

2

2t2
) (6)

When t increases T (x, t) becomes zero everywhere, because
the mean of the difference field is zero. Hence, T (x, t) can be
interpreted as a process of histogram value exchange, which
makes h1(x) and h2(x) equivalent. Measure of this process
can be used as value of difference between two histograms.
Dissimilarity measure between h1(x) and h2(x) is defines as:

K̂(h1, h2) =

∫ t

0

k(|T (x, t)|)dt (7)

, where t is a integration constant upper bound. k(.) is a
norm, and L1 norm used due to its performance and cheap
calculation process.

Fig. 1. . Difference between two histograms with shift. (a) h1. (b) h2. (c)
d = h1 − h2, adopted from [9].



As mentioned in [9], assume h1(x) = δ(x) and h2(x) =
δ(x − ∆). This means that histogram is shifted by ∆ > 0.
Therefore, T0 = δ(x) − δ(x − ∆). The diffusion process
becomes:

T (x, t) = (δ(x)− δ(x−∆)) ∗φ(x, t) = φ(x, t)−φ(x−∆, t)
(8)

Direct computation of K̂ is expensive. Instead, [9] of-
fered an alternative distance function based on the Gaussian
pyramid. The Gaussian pyramid is a natural and efficient
discretization of the continuous diffusion process T (x, t).
Diffusion distance K̂(h1, h2) calculates as:

K(h1, h2) =

L∑
l=0

k(|dl(x)|) (9)

, where d0(x) = h1(x) − h2(x), dl = [dl−1(x) ∗ φ(x, σ)] ↓2
l = 1, . . . , L are different layers of the pyramid. ↓2 denotes
half size down sampling. L - is the number of pyramid layers,
σ - standard deviation for the Gaussian filter φ. As long as
k(.) is a metric, as metric was chosen L1 norm, equation (9)
becomes:

K(h1, h2) =

L∑
l=0

|dl(x)| (10)

As alternative method for measuring dissimilarity between
histograms, we can use divergence to check difference between
two distributions.

B. Kullback-Leibler divergence

Divergence function D[z : y], z, y ∈ S should satisfy the
following conditions[10]:

1) D[z : y] > 0, where z 6= y
2) D[z : y] = 0, when and only when z = y
3) For small dz,

D[z + dz : z] ≈ 1

2

∑
gijdzidzj (11)

, where S is a manifold consisting of probability distributions
parameterized by z. z = (z1, . . . , zn) - local coordinate
system.

In general, a divergence is not symmetric with respect to z
and y so that:

D[y : z] 6= D[z : y] (12)

Example of symmetric divergence is the square of the
Euclidean distance:

D[z : y] =
1

2

∑
|zi − yi|2 (13)

Kullback-Leibler divergence is a case of f -divergence[10]:

Df [p : q] =
∑

pif(
qi
pi

) (14)

Measure the distance between two probability distributions
q(x) and p(x) over the same x is called divergence the
Kullback-Leibler. The concept is closely related to the relative
entropy, and is an asymmetric measure of the difference
between the two probability distributions. Kullback-Leibler

divergence (KL) of q(x) in p(x) denotes as DKL(p(x), q(x))
and denotes the amount of lost information q(x) in the
approximation of p(x) [10].

Define q(x) and p(x) as two probability distributions of
a random discrete quantity x. Sum of probabilities p(x) and
q(x) equals 1, and for every x ∈ X , p(x) > 0 and q(x) > 0.
Then DKL(p(x), q(x)):

DKL(p(x)||q(x)) = −
∑
x∈X

p(x) ln
q(x)

p(x)
(15)

However, it is possible to make Kullback-Leibler divergence
symmetric by following method:

S(P,Q) = DKL(P,Q) +DKL(Q,P ) (16)

S(P,Q) becomes symmetric but it is not yet metric. It
should be noted, that in our experiments distribution generates
by the same approach and differences between two distribu-
tions are too small. As we know, if distinction is small (from
the third condition), then it can be used as metric, because
it locally proportional to Fisher information metric. Hence,
Kullback-Leibler divergence used as metric.

IV. DATASET

For numerical results, was used standard corpus text8 of En-
glish Wikipedia dump on Mar. 3, 2006, which had been used
in the many studies. text8 dataset consist 17,005,208 words
and 253,855 unique words. Corpus was already prepocessed
and prepared for training process.

V. EXPERIMENTS

In numerical experiments, Word2Vec model was used to
evaluate the stability of the model for distributed word rep-
resentation. The reasons for the instability of learning are
random initialization of word embedding vectors, and the order
in which these examples are processed. Therefore, three types
of randomness were tested:
• the procedure with different order of examples and with

the same initialization vectors;
• with random initialization and identical order of exam-

ples;
• with different order of examples and random initialization

of vectors.
For all models used Word2Vec default hyperparameters,

where word embedding size is 200 [11] [12].
For each of these three cases of randomness was trained 20

couples of Word2Vec models. So, totally for each randomness
case was generated 40 models.

Models were compared based on the distance between
words vectors embeddings, than histograms were built in the
following way:

1) for each randomness case train 20 couple of embeddings
models;

2) define m1 and m2 as models from one iteration;
3) for each word wi in vocabulary:

calculate L2 norm between word embeddings of m1 and
m2;



4) collect L2 norms in the same iteration and build his-
togram;

After that, calculate differences between all generated his-
tograms, within particular randomness case, using Diffusion
distance and Kullbak-Leibler divergence. Since we made sev-
eral experiments, was built boxplot for each randomness case
in ”Fig.2” and ”Fig.3”.

Moreover, the estimation of ”dissimilarity” in terms of L2

norms, we should measure cosine angle as differences in
directions. Algorithm for above estimation is following:

1) use trained coulpe of Word2Vec models m1 and m2;
2) calculate cosine angle of the same word between m1

and m2 models;
3) collect cosine angle values and build histogram;
In ”Fig.4” showed boxplot of cosine angle values for each

randomness type.

Fig. 2. . The range of values of Diffusion metric (Y-axis) for each of the
randomness case (X-axis). 1) model with different order of samples. 2) model
with random vector initialization. 3) with random vector initialization and
different order of examples.

Fig. 3. The range of values of Kullback-Leibler divergence (Y-axis) for each
of the randomness case (X-axis). 1) model with different order of samples. 2)
model with random vector initialization. 3) with random vector initialization
and different order of examples.

VI. DISCUSSION

According to obtained results, in our opinion different order
in which these examples are processed has less contribution

Fig. 4. The range of values of cosine angle (Y-axis) for each of the
randomness case (X-axis). 1) model with different order of samples. 2) model
with random vector initialization. 3) with random vector initialization and
different order of examples.

to randomness, compared to random initialization of word
embedding vectors. These results intuitively interpreted better
by Diffusion distance metric, and this result may be used to
try stabilize training process of models.

VII. CONCLUSION

In this paper, was considered three types of randomness
during training process of word embedding models. Dissim-
ilarity of produced word embedding vectors in each type
of randomness measured by metrics: Diffusion distance and
Kullback-Leibler divergence. Training dataset is the database
of medical texts from public sources in Russian language.
Diffusion distance as a metric better suited, because it is
intuitively understandable and shows how much work needed
to make two histograms similar. In the future work will be
tested other word embedding algorithms and will be proposed
methods for stabilization of training models.
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