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Abstract—The occurrence of mixed pixels is common in hy-
perspectral data. It is necessary to analyse mixed pixels for clas-
sification, detection, discrimination, and quantification. Spectral
unmixing is needed for mixed pixel analysis of the hyperspectral
data. It includes endmember extraction and abundance estima-
tion of mixed pixels. In this work, fixed acceleration coefficients
based PSO approach is applied and analysed for abundance
fractions estimation of endmembers in spectral unmixing. Time
varying inertia weight strategy and fixed acceleration coeffi-
cient values have been used in this approach. For estimation,
supervised linear mixing model is considered, following sum-
to-one and non-negative constraints, respectively. A proposed
approach is tested over real hyperspectral data i.e., jasper ridge
dataset. The performance metrics of the approach are Average
Abundance Error (AAE) and Root Mean Square Error (RMSE).
AAE and RMSE values have been noted over different number
of iterations. It is observed that result of fixed acceleration
coefficients based PSO approach is promising.

Index Terms—Hyperspectral Imaging, PSO, Abundance Esti-
mation, LMM

I. INTRODUCTION

In recent years, hyperspectral imaging has been achieved
prominent progress in hardware and software for various
applications. It consists of hundreds of spectral bands with a
spectral resolution of less than 2 nm to 10 nm which generates
continuous spectral signature. While multispectral imaging
consists of few numbers of spectral bands and comparatively
less spectral resolution. Consequently, it generates a discrete
spectral fingerprint of the object under test. Hyperspectral
imaging has been using in various applications which includes
forestry [1], vegetation and water resources [2], agriculture and
food inspection [3], biomedical applications [4], oceanology
[5] and geological [6] applications. However, it is noticed
that the spatial resolution of the most of the hyperspectral
images are low. In remote sensing, it is obvious that the
pixels consist mixture of several spectral components, known
as endmembers. In such a case, response of a pixel is mixture
of individual response of each endmember within the pixel.
Thus, the observed pixels are mixed pixels which consist
spectral signature of several pure materials. The subject of
mixed pixel increases as the pixel size increases. Such mixed
pixels impose restrictions on the practical application of hyper-
spectral images. In hyperspectral imaging, many applications
require estimation of abundance proportions of endmembers.
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The knowledge of abundance fractions is used in several
applications which includes forestry, mining and others.

Therefore, segregation of the mixed pixels is known as hy-
perspectral unmixing which is important for interpretation of
data. Spectral unmixing [7] refers to the process of separating
mixed spectra into a set of constitutive spectras and their
abundance fractions. The endmembers are assumed as a pure
substance present in the image and abundance fractions indi-
cate their respective percentage in the pixel. Decomposition of
mixed pixel consists of two steps i.e., endmember extraction
and abundance estimation. In [8], Omran et al. have used PSO
for endmember selection for multispectral images. And, in
[9], [10], authors have been used Particle Swarm Optimization
(PSO) to perform the nonlinear unmixing operation over the
hyperspectral image. However, Linear Mixing Model (LMM)
is very popular in spectral unmixing. It is easy to calculate
and simple in mathematical representation. In LMM, It is
assumed that each pixel in the hyperspectral image is linearly
weighted by the endmembers existing in the pixel. Hence,
the objective of this study is to estimate the abundance
fractions of hyperspectral data by exploiting the capability of
fixed acceleration coefficient PSO approach. It is achieved by
minimization of the objective function. Herein, it is considered
that the endmembers are available and linear mixing model is
used for abundance estimation operation. In this work, Average
Abundance Error (AAE) and Root Mean Square Error (RMSE)
have been calculated over a different number of iterations to
find the optimum number of iterations for estimation purpose.

The remainder of the paper is organized in the following
manner. Section 2 and 3 discuss PSO and linear mixing model
as a common ground. Section 4 presented the methodology
for the proposed work which includes initialization, objective
function, parameters and performance measures. An experi-
ment has been presented in section 5 which includes result
and analysis. Finally, section 6 ends with the conclusion and
future scopes.

II. PSO

Particle Swarm Optimization(PSO) is a heuristic search
or optimization technique inspired by birds flocking or fish
schooling behavior. It is stochastic population-based opti-
mization approach and was first introduced by Kennedy and



Eberhart in 1995 [11]. PSO is simple, robust and efficient
optimization algorithm. In general, PSO minimizes the given
function of several variables iteratively in order find the
optimal solution. Since the commencement of PSO, it has
been using in several applications which includes robotics and
control [12], [13], image processing [14], [15] and others.
Equations of particle for velocity and position are given in
Equation 1 and 2.
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In above equation, ¢ is the particle index, w is inertia
weight, ¢; and ¢y are the acceleration coefficients, and R ()
and R() are the random values. P; and P, are the personal
best and global best. It is noticed that the PSO is sensitive
to control parameters especially inertia weight, swarm size
and acceleration coefficients. Wrong initialization of these
parameters may lead to inaccurate output. Different types of
time varying and fixed, acceleration coefficients and inertia
weight strategies have been used to obtain accurate output.
Also, other algorithmic configurations have been used for
tuning these parameters.

III. LINEAR MIXING MODEL

In remote sensing, spectral mixture analysis has been used
to do classification, detection, quantification, and discrimina-
tion. In general, a pixel contains a number of materials in
hyperspectral/multispectral imagery. In the past, two major
mixing models have been proposed. And, they are linear
mixing model (LMM) and nonlinear mixing model (NMM).
LMM is simple in mathematical representation and easy to
calculate. In LMM [16], mixed pixel spectra are represented as
a linear combination of component spectras. And, the weight
of each spectrum is proportional to the covered fractional area
of the mixed pixel. The general equation for LMM is given
below:

M
y=> i +e, 3)
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It follows sum-to-one and non-negative constraints, respec-
tively, which are given below:

M
dar=1, ap>=0 Vk=1,.,M (4)
k=1

where,

y  Mixed pixel spectra;

rr  Endmember;

«y  Abundance fraction;

M  Number of endmembers;
e  Error term.

IV. METHODOLOGY

In this section, methodology for the proposed work has been
discussed. Methodology for the proposed work for abundance
estimation has been shown in Figure 1. Different sections of
methodology have been discussed below:

A. Initialization

Initial velocity and position of the each particle is initialized
as Random value and (1/number of endmembers)*Rand i.e.,
random number.

B. Setting of Parameters

There are three parameters which are needed to adjust
prior to do optimization. And, the parameters are inertia
weight, social and cognitive component. Sugneo function [17]
is used as an inertia weight strategy. Expression for the sugeno
function is given in Equation 5.

w=(1-8)/(1-sB) )

In above equation, s is constant, taken as -1.5 and 3 is (cur-
rent iteration/maximum iteration). Fixed value of acceleration
coefficients have been used for abundance estimation. Values
of cognitive (c1) and social (co) components are taken as 2 in
the Equation 1.

C. Personal and Global best

Schematic representation of the global best particle per pixel
as shown in Figure 2. In this Figure, N represents the number
of pixels and n denotes the number of particles per pixel.
P,...P, represent the number of particles per pixel. Value
of global best changes, if the fitness function value is less
than previous value of particular pixel during iteration run.
Each pixel has its own global best. After fixed number of
iterations run, global best per pixel represents the abundance
fraction of that pixel. During the course of iterations, particles
follow sum-to-one and non-negative constraints, respectively.
G4, ...G n represent the global best of M, ....My pixels.

D. Termination Criteria

In this approach, Number of iterations is the termination
criteria. AAE and RMSE values are noted over 60,80, 100,
120, 140 and 160 iterations to find the optimum number of
iterations number needed for solution.

E. Objective Function

The objective function for the PSO approach has been given
in Equation 6.

N
min f; = Y (4 — @ * a;)* (6)
i=1
y and x represent the mixed pixels and endmembers and a
is the abundance vector. In above equation, y and x are fixed
while a is the optimizing one.
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Fig. 1. Methodology for the proposed work

FE. Performance Measure

Two metrics are used to measure the performance i.e.,
Average Abundance Error (AAE) and Root Mean Square
Error (RMSE) for spectral abundance estimation. They are
calculated at different number of iterations. Expressions for
the AAE and RMSE are given below:

N
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Fig. 2. Schematic representation of the global best particle per pixel

N
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In above equation, Actual; and Predicted; are the actual
and estimated abundance vectors for the j;, pixel, N is the
number of pixels and M is the number of endmembers. AAE
and RMSE values are recorded over different number of
iterations in order to find the optimum number of iterations.

V. EXPERIMENT

In this work, PSO approach is tested over real hyperspectral
data of jasper ridge [18]-[20]. It is one of the popular
hyperspectral dataset consists of 224 channels ranging from
380 nm to 2500 nm and the spectral resolution is up to 9.46
nm. After correction, it consists of 198 channels. For this
work, a subpart of the corrected dataset is used for abundance
estimation. There are four endmembers present in the data
i.e., road, soil, water, and tree and their spectral signatures for
192 bands have been shown in Figure 3. Actual abundance
fractions of the endmembers and the endmembers are given
with the dataset for testing the performance.

For PSO approach, a subpart of the jasper ridge dataset has
been used i.e., 4000 to 4999 pixel range (1000 pixels) along
with 192 bands. Twenty-five particles per pixel have been used
in order to find the abundance fractions of each endmembers.
Each particle has been following sum-to-one and non-negative
constraints, respectively. Position of each particle is initialized
by the value i.e., ((I/number of endmembers)*Rand). It is
run over different number of iterations to find the suitable
iteration for convergence. AAE and RMSE values are taken
over a different number of iterations as shown in Figure 4.
Both values have been calculated in between the estimated
and the actual(given) abundance fractions. It is observed that
the value of AAE and RMSE are 0.0894 and 0.1788 at 60
iterations. After 120 iterations, it is noticed that the values
of AAE and RMSE start converging. There is less variation
in the value after 120 iterations. At 160 iterations, values
of AAE and RMSE are 0.0776 and 0.1552. Furthermore,
an accuracy of this proposed approach may be increased by
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Fig. 4. AAE and RMSE for spectral abundance estimation at different iterations

tuning the parameters values, the number of particles and other
parameters.

VI. CONCLUSION

Spectral unmixing is one of the major post-processing op-
erations of hyperspectral image processing. In this work, PSO
based approach is applied to estimate the spectral abundance
fractions by minimizing the objective function. Time varying
inertia weight strategy and fixed acceleration coefficients based
PSO approach is used. For abundance estimation, supervised
linear mixing model is considered. It is tested over jasper
ridge dataset which consists of four endmembers and actual
abundance fractions have been given for testing puropose.
AAE and RMSE have been calculated over different iterations
and found the solution start converging after 120 (approx.)
iterations. Values of AAE and RMSE at 120 iterations are
0.0755 and 0.1510, respectively. It is found that the fixed
acceleration coefficients based PSO approach has a potential
to compute the abundance fractions in spectral unmixing.

Accuracy and efficiency of this approach may be increased by
varying and tuning the different parameters and considering
different mixing models.
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