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Abstract—In recent decades, ranking has played a central
role in large-scale information retrieval, preference analysis for
recommendation systems, and influence analysis on social media.
State-of-the-art ranking algorithms, e.g. PageRank, HITS, and
their variants, traverse through a large network of connected
items and compute their importance (a.k.a. centrality) by consid-
ering the incoming and outgoing links of each node. However,
since these techniques take into account the centrality as an scalar
quantity, it limits our analytical perspective to only one dimension
— rank number. In this paper, we introduce an efficient multi-
dimensional ranking approach that offers both node ranking and
cluster analysis on any graph-based structure. We demonstrate
that our approach is not only compatible with PageRank’s
scalar centrality but also manifests multi-dimensional spatial
distribution of nodes. Therefore, it offers the possibility to
perform cluster analysis on graph-based structures and keyword
extraction via manifold centrality.

Index Terms—manifold ranking e semantic network e Page-
Rank Algorithm e eigenproblem e cluster analysis

I. INTRODUCTION

Ranking is a non-trivial task in information retrieval and nat-
ural language processing. In large-scale information retrieval,
search results are sorted by their relevance before returning to
the user. Many recommendation systems sort search results by
user preferences derived from a large network of items, users,
and purchase history [1], [2]. In social media analysis, user
impact and influence are analyzed to identify micro-influencers
[3], [4]. In natural language processing, keyword extraction
and automatic summarization can be done by sorting possible
keywords by their significance [5].

State-of-the-art ranking algorithms, e.g. PageRank [6] and
its variants such as SimRank [2], and HITS [7] traverse
through a large network of connected items and compute their
importance (a.k.a. centrality) by considering the incoming and
outgoing links of each node. Especially in PageRank, ranking
is considered an eigenproblem, where the network is converted
into an adjacency matrix and the centrality of each node is
efficiently computed by finding the dominant eigenvector of
such matrix in an iterative fashion. The algorithm is proven to
be stable and always converge. [8]

Despite its appealing stability and guarantee to converge,
PageRank and its variants have three drawbacks. First, the
computed centrality score is a scalar quantity; i.e. it has
only one dimension. This limits our analytical perspective to
only rank numbers and renders us unable to perform cluster

analysis of nodes. Second, the method takes into account only
one dominant eigenvector of the adjacency matrix, it discards
all remaining non-dominant eigenvectors and the information
contained. Third and last, the method assumes all links are
of identical categories. This is not always the case in other
graph-based structures such as semantic network whose links
are categorically discriminated.

In this paper, we propose ManifoldRank, an efficient
multi-dimensional ranking approach that offers both node
ranking and cluster analysis on any graph-based structure.
Henceforth, the notion of manifold ranking denotes multi-
dimensional ranking of items in an n-dimensional Euclidean
space. We believe that if we can compute a spatial distribution
of nodes from their centrality, it will unleash the possibility
to perform such task on any graph-based structure. This can
be made possible by incorporating either non-dominant eigen-
vectors or dominant eigenvectors of the adjacency matrices of
each relation type.

The rest of the paper is organized as follows. Section II
provides some background on directed graph and PageRank
Algorithm. Section III describes our manifold ranking ap-
proach in which multiple eigenvectors are incorporated into
ranking. Section IV demonstrates that our approach yields
results compatible with those of PageRank and also offers a
spatial distribution of nodes according to their manifold cen-
trality. We further discuss the experiment results in Section V.
Finally, Section VI concludes the paper.

II. BACKGROUND
A. Directed Graph and Adjacency Matrix

Let G = (V, E) be a directed graph (as shown in Fig. 1(a)),
where V is the set of all nodes (vertices) and E is the set of
all edges linking from edge to edge. Any directed graph can
be represented as an adjacency matrix A = [a,;] (as shown
in Fig. 1(b)), where each element a;; represents the existence
of an edge from node ¢ to node j; i.e. a;; = 1 if there exists
such link in the graph, otherwise a;; = 0.

B. PageRank Algorithm

PageRank [6] is a well-known iterative algorithm that com-
putes the centrality of each node in any directed graph via
random walk. In a nutshell, random walk (walking from a
random starting point to all immediate neighbors, or pausing
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Figure 2. PageRank’s adjacency matrix

at that point) on the graph reflects the count of visits of each
node. The more steps the random walk takes, the more the
importance of each node is intensified by the accumulated visit
counts. If A is an adjacency matrix of dimension N x N, a
random walk of k steps is computed by

x® = (A4+1)Fx© (1)

where x(©) is a vector of dimension N denoting a starting
point. The identity matrix I is added to A to represent a pause
of random walk on each node.

In PageRank Algorithm, each edge of the graph is weighted
in proportion to the specificity of the source node. The less
outgoing edges it has, the more specific it is; i.e. we assign
each element of the adjacency matrix A with

1/L; 2

al-j =

where L; denotes the number of outgoing links from node
i. For example, the directed graph in Fig. 1(a) will have the
adjacency matrix in Fig. 2.

Once we obtain the adjacency matrix, we then compute
the centrality of each node with Algo. 1. We start from a
random point denoted by a normalized random vector x(©).
Here we set the probability of pausing at a node with a constant
d € [0, 1] called a damping factor. We iteratively compute the
random walk in step 6 and normalize the resultant vector in
step 7. When the vector x(*) converges within a small bound
e or the limit of iterations K has been reached, the algorithm
terminates and returns x(*).!

Each element of the returned vector xgk) is the centrality
score of node i, which is proportionate to its accumulated

n this paper, we set § = 0.85, € = 10—4, and K = 20. We normalize the
vectors with 2-norm, i.e. [|x||y = 4/ Zivzl (@1)2. We compute the distance

of two vectors x and y with distance(x,y) = ||x — y||,.

Algorithm 1 pagerank(A, J,e)

Let x(©) be a random vector
X0 O /||xO)
Let k<0
repeat
k+—k+1
Compute x*) < (1 — )1 + sAx* -1,
x4 ¢ x) /x|
until distance(x®, x*~1) < eor k > K
return x(¥)
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visit count, and this score is then used for ranking. Since the
iteration is equivalent to performing the Power Method [9], the
resultant vector x(*) is thus the dominant eigenvector of the
adjacency matrix. Note that each element of any eigenvector
may be negative.

C. Spectral Decomposition

An eigenvector of a linear transformation is a non-zero
vector that changes only by a scalar factor when that linear
transformation is applied to it. In the /N-dimensional vector
space, the linear transformation becomes a square matrix A
of dimension N x N, and the vector is a column vector x of
dimension NV, such that

Ax = Xx 3)

where )\ is a non-zero scaling factor called the eigenvalue as-
sociated with the eigenvector v. Any N x N matrix always has
N pairs of eigenvectors and associated eigenvalues. The set of
these pairs is called the eigensystem of a linear transformation.
The pair (x, A) whose eigenvalue A is the largest is called the
dominant eigenvector and eigenvalue, respectively. Assuming
all eigenvectors x are unit vectors, the spectral decomposition
of A is the expansion in terms of eigenvectors and eigenvalues:

N
A = ) hxx] 4)
i=1

where each eigenvalue \; corresponds to x;, and all eigenval-
ues are sorted: Ay > Ao > A3 > ... > Ay > 0.

III. MANIFOLD RANKING
A. Motivation

Our approach is generally motivated by the spectral de-
composition. It is supported by Kleinberg’s [7] suggestion
on considering multiple eigenvectors as a way to obtain
authorities within multiple node communities. In Eq 4, any
adjacency matrix, which is a square matrix, is composed of N
pairs of eigenvectors and eigenvalues. Discarding some non-
dominant eigenvectors and eigenvalues will result in approxi-
mating the adjacency matrix, causing information loss in the
process. Only considering the dominant eigenvector, PageRank
jettisons all centrality scores in the remaining eigenbases that
can discriminate items in the same rank in finer details.



We are motivated to integrate the traditional PageRank
Algorithm with non-dominant eigenvectors and eigenvalues,
resulting in the notion of manifold ranking, denoting multi-
dimensional ranking of items in an n-dimensional Euclidean
space. Its advantages have two folds. First, our centrality
ranking is still compatible with the original PageRank. Second,
it also manifests a multi-dimensional spatial distribution of
nodes in the graph.

B. Monolithic Manifold Ranking

Let’s employ some non-dominant eigenvectors in addition to
the dominant eigenvector. Since each eigenvector determines
node centrality scores on its eigenbasis, we imply that con-
sidering these scores on multiple eigenbases may yield finer-
grained ranking. Moreover, we will weight the scores on each
eigenbasis with its own eigenvalue.

Assume that an input directed graph G is monolithic; i.e.
all edges are not discriminated by relation types. We extract
an adjacency matrix A out of G, and follow Algo. 2. We
decompose the adjacency matrix into m dominant eigenvectors
X1,Xa2, ..., X, and the corresponding eigenvalues A\; > Ay >
... > Ay > 0. In step 4, we compute the eigenvalue )\, of
each x(®) with the Rayleigh quotient. In step 5, we anihilate
the impact of previously found eigenvectors with Hotelling’s
deflation method. This algorithm yields a rank matrix

)\1X(1)T
R = — : %)
)\mx(m)T
where each column vector r; of R is the rank vector of each
i-th node, and Z = ;" | i, is the normalizing factor. Thus,

for any i-th node, the centrality score on the j-th eigenbasis
is Tij = /\ju'(}g])/Z

Algorithm 2 manifoldrank monolithic(A,m,d,e€)
s Let A = A
: for k=1 to m do
Compute x*) < pagerank(A*) §, ¢)
KT A () 4 ()
Compute Ay ﬁ
AGFTD o AR) ), x(F) x (R)T
end for
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)\1X(1)T

~

:Let R = % , where Z = >} | Ak

)\mx(m)T
8: return R

Note that each node now has a rank vector rather than a
scalar centrality score. For ranking purposes, we can then
compute a scalar score out of a rank vector r; by calculating
its size with p-norm:

1/p

> lryl? ()
j=1

rill, =

where p > 1.2 Note the absolute sign |-|; therefore, we consider
only the absolute value of each element r;;. Furthermore, the
spatial distribution of these rank vectors allows us to perform
cluster analysis with respect to node centrality. We will see
that nodes with similar PageRank scores tend to constellate in
the same cluster in Section IV.

C. Semantic Manifold Ranking

In the case where an input directed graph is a semantic
network, it is compulsory to discriminate its edges with
relation types. However, this need has never been addressed in
the traditional PageRank Algorithm. We alleviate this issue by
segregating edges with their relation types and ranking each
group separately. Since the rankings of each group are on
different eigenbases, we weight them with their eigenvalues.

Given an input semantic network GG, we extract an adjacency
matrix for each relation type, resulting in a list of n adjacency
matrices [A,]. Following Algo. 3, we decompose each Ay
into the dominant eigenvector x(*) for each relation type k.
Then we compute the corresponding eigenvalue \; > 0 with
the Rayleigh quotient. This algorithm also yields a rank matrix
R, which is similarly computed by Eq 5.

Algorithm 3 manifoldrank_semantic([A,],d,€)

1: for each relation type £k =1 to n do

2. Computer x¥) — pagerank(Ay, d, €)
xOT A, ()

3:  Compute \g < &

4

Tx®TxFE
: end for
/\1X(1)T
5: Let R =1 : , where Z =>"7" | A\
/\mx(m)T

6: return R

Note that each node has a rank vector of dimension n. This
vector collects the weighted centrality scores for each relation
type. For ranking purposes, we can compute a scalar score out
of a rank vector r; by p-norm in Eq 6. The spatial distribution
of these rank vectors also allows us to perform cluster analysis,
as we will see in Section IV.

IV. EXPERIMENTS
A. Settings

Datasets: We use four semantic networks of Linked Open
Data (shown in Table I) to evaluate the manifold ranking. All
of these datasets are RDF graphs that contain a set of triples
(s,v,0), where s is a subject, v a verb or a relation, and o
an object, all of which encoded as URIs (uniform resource
identifiers). The URIs of distinct subjects and objects will
become nodes in the graph, and all edges are categorically
discriminated by the URIs of distinct verbs. In this paper,
we classify semantic networks into two categories: small
(containing up to 20,000 nodes) and large (containing more
than 20,000 nodes). We deliberately vary the number of nodes
to investigate the effects of this factor.

2We set p = 2 in this paper.



Table I
DATASET STATISTICS

URIs Rels
14,961 12

Descriptions
Bibliographical LOD of
textbooks used in
elementary & secondary
education in Japan [10]
LOD about every Nobel
prize since 1901 [11]
LOD of numismatic
concepts linked to other
resources [12]

WordNet 3.0: LOD of
English lexicons grouped
as synonym sets, a.k.a.
synsets, and relations
among these synsets [13]

Triples
51,807

JTexts

Nobel 19,279 21 52,222

Nomisma 41,586 28 77,068

WN30 117,663 8 240,744

Table IT
SIMILARITY (rs) BETWEEN PAGERANK AND MANIFOLD RANKING

| Monolithic  Semantic
JTexts 0.9550 0.9967
Nobel 0.9820 0.9962
Nomisma 0.9948 0.9830
WN30 0.9663 0.9281

Parameter setup: We set the damping factor 6 = 0.85,
the acceptable error rate € = 107%, and the limit of iterations
K = 20 in all experiments. In semantic manifold ranking, we
extract only one eigenvector for each relation type; therefore,
the size of the rank vectors equals to the number of relation
types. We compute the scalar centrality score out of the rank
vectors in Eq 6 using 2-norm; i.e. p = 2.

Evaluation metrics: It is necessary to demonstrate how
similar our ranking approach is to the PageRank Algorithms.
We quantitatively measure the similarity of both ranking
systems with Spearman’s rank correlation coefficient [14]:

cov(rg,, T
- v (rgx, 18y) ™

Org, Org,,
where rg, and rg, are ranking orders of two raw scores z;
and y; of a sample of size N. cov(rg,, rgy) is the covariance
of the rank variables

N
1 N N

covligegy) = 3 O el — el — 7y)] ®
i=1

where 7 and 7, are the average ranks of all x; and all y;,

respectively. oyg and oy, are standard deviations of rg,

and 2y, respectively. The more 7 it is, the more similar the

ranking orders are.

B. Experiment 1: Ranking

We compared our method against the traditional PageRank
via the Spearman’s rank correlation coefficient 5. For each
semantic network, the similarity of ranking orders generated
from the two methods of manifold ranking, i.e. monolithic
and semantic, is measured against the ranking order generated
from PageRank.

Effects of Dimension on Monolithic Manifold Ranking
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Figure 3. Effects of dimensions m on the monolithic manifold ranking

The results in Table II suggest that the number of nodes
seems to affect the similarity of the resultant rank order-
ing. Here we chose to extract 10 eigenvectors in monolithic
manifold ranking, i.e. m = 10. The semantic method is
more similar than the monolithic method in small semantic
networks, while the first is slightly less similar than the latter
in large semantic networks. When applying our approach on a
very large semantic network e.g. WN30, the similarity scores
are relatively inferior to those of smaller networks. We suspect
that our scalar ranking score computed by Eq 6 may be
vunerable to negative centrality scores.

We further investigated the effects of m (the number of
incorporated eigenvectors) in monolithic manifold ranking. In
Fig. 3, we varied m from 4 to 20 and measured the similarity
to PageRank. The similarity slightly changes in the case of
JTexts, Nobel, and Nomisma. However, the similarity for
WN30 plummets after m = 10. We suspect that incorporating
non-dominant eigenvectors to ranking may have increased the
susceptibility to negative centrality scores, causing a similarity
plunge.

C. Experiment 2: Cluster Analysis

We studied the spatial distribution of rank vectors in tan-
dem with PageRank’s scalar centrality scores. In Fig. 4, we
performed spectral cluster analysis of rank vectors obtained
in Experiment 1 with t-SNE [15]. This technique spectrally
projects a set of input vectors into a lower-dimensional space,
while preserving all constellations as in the higher-dimensional
space. Each dot denotes a projection of a rank vector onto the
2D space. For each dot, a PageRank centrality score can be
determined by the dot’s color: violet (lowest) < blue < teal <
green < yellow < orange < red (highest). The big dots represent
the top-20 list of ranking.

From the scatter plots, we found that rank vectors produced
from the monolithic manifold ranking seem more dispersed
than those produced from the semantic manifold ranking,
e.g. Fig. 4(e) vs. Fig. 4(f). The dispersion is even more
profound across the board when we investigated the top-20
nodes (big dots), e.g. Fig 4(a) vs. Fig 4(b). These big dots



tend to constellate more tightly in semantic manifold ranking,
because central nodes usally have high centrality scores in
every relation type.

We observed that low-ranked vectors (in violet) seem to
separate from the higher-ranked ones quite clearly in both
ranking methods, especially in Figs. 4(c), 4(d), and 4(f). That
is also because non-central nodes usually have low centrality
scores in most relation types, resulting in clusters of nodes
of the same ranks. Nevertheless, higher-ranked nodes seem to
intermingle with other ones of different ranks in the monolithic
method, particularly in Figs. 4(e) and 4(g). This is due to
spikes in non-dominant eigenvectors that perturb the spatial
distribution of nodes according to their rank vectors.

Interestingly, for a very large semantic network with few
relation types, e.g. WN30, we found that the monolithic
method has a better spatial distribution of rank vectors than the
semantic method does (Fig. 4(g) vs. Fig. 4(h)). This is because
the size of rank vectors in the monolithic method (m = 10)
is larger than that in the semantic method (n = 8), offering
finer-grained ranking and more distinct separation.

V. DISCUSSION

In this section, we will discuss three findings derived from
the experiment results: the behaviors of rank vectors, the size
of rank vectors, and the scalar rank score.

Behaviors of rank vectors: We can generally classify
rank vectors into four types. Type 1 (the top-notch) has
high centrality scores in most or all dimensions. Type 2 (the
spiky) generally has middle-to-low centrality scores in the
majority of dimensions and have high scores (or spikes) in
the remaining dimensions. Type 3 (the common) has middle-
to-low centrality scores in almost all dimensions. Finally, Type
4 (the low-ranking) has very low centrality scores in almost all
dimensions. Among these types, the rank vectors of Group 3
are the most problematic for cluster analysis, because they tend
to mingle with each other and form a mistakenly mixed group.
Weighting each dimension with its corresponding eigenvalue
as in Eq 5 certainly helps mitigate this issue in some degree.
However, weight assigning for each non-dominant eigenvector
is still an open question and may be task-specific.

Size of rank vectors: In monolithic manifold ranking,
non-dominant eigenvectors convey additional information and
make ranking finer-grained. Weighting them with their corre-
sponding eigenvalues makes this additional information more
subtle, not overpowering the PageRank’s centrality scores.
However, incorporating excessive eigenvectors may diminish
the effects of these scores if non-dominant eigenvalues become
large. Choosing the right number of non-dominant eigenvec-
tors may be a bit tricky.

Scalar rank score: We found that employing p-norm as
the scalar score in Eq 6 makes ranking susceptible to negative
centrality scores. In our experiments, the similarity of ranking
on small to medium-sized semantic networks are close to 1.0,
while that of a very large semantic network are approximately
0.72. This is because there is higher chance to find negative

centrality scores on a very large semantic network. To circum-
vent this issue, we may use the p-pseudonorm instead:

pseudonorm(r;,p) = ||sigmoid(r;)]|, ©)

where p > 1 is a positive number. However, computing a
scalar rank score out of a rank vector is still a tough challenge.

VI. CONCLUSION

We proposed an efficient manifold ranking approach that of-
fers both PageRank-styled ranking and cluster analysis on any
graph-based structures. The experiment results showed that our
approach is compatible with PageRank’s scalar centrality and
manifests multi-dimensional spatial distribution of nodes. Our
method offers the possibility to perform cluster analysis and
keyword extraction via manifold ranking.

Our future work remains as follows. First, we will improve
the process of eigenvector weighting by taking into account
task-specific information, e.g. knowledge-graph completion.
Second, we will explore the effects of incorporating more non-
dominant eigenvectors in monolithic manifold ranking. Third,
we will consider various types of norm, as well as the later
proposed p-pseudonorm, as a way to tackle negative centrality
scores. Fourth and finally, we will endeavor to improve the task
of network community detection with manifold ranking.
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